具有优异形状记忆和远程致动功能的磁性热响应聚乳酸/PMMA/Fe3O4 纳米复合材料的 4D 打印技术

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Hossein Doostmohammadi, Majid Baniassadi, Mahdi Bodaghi, Mostafa Baghani
{"title":"具有优异形状记忆和远程致动功能的磁性热响应聚乳酸/PMMA/Fe3O4 纳米复合材料的 4D 打印技术","authors":"Hossein Doostmohammadi,&nbsp;Majid Baniassadi,&nbsp;Mahdi Bodaghi,&nbsp;Mostafa Baghani","doi":"10.1002/mame.202400090","DOIUrl":null,"url":null,"abstract":"<p>This study presents the development and 4D printing of magnetic shape memory polymers (MSMPs) utilizing a composite of polylactic acid (PLA), polymethyl methacrylate (PMMA), and Fe<sub>3</sub>O<sub>4</sub> nanoparticles. The dynamic mechanical analysis reveals that the integration of Fe<sub>3</sub>O<sub>4</sub> maintains the broad thermal transition without significantly affecting α-relaxation time, indicating high compatibility and homogeneous distribution of the nanoparticles within the polymer matrix. Field emission scanning electron microscopy further confirms the high compatibility of PLA and PMMA phases as well as uniform dispersion of Fe<sub>3</sub>O<sub>4</sub> nanoparticles, essential for the effective transfer of heat during the shape memory process. Significantly, the incorporation of magnetic nanoparticles enables remote actuation capabilities, presenting a substantial advancement for biomedical applications. 4D-printed MSMP nanocomposites exhibit exceptional mechanical properties and rapid, efficient shape memory responses under both inductive and direct heating stimuli, achieving 100% shape fixity and 100% recovery within ≈85 s. They are proposed as promising candidates for biomedical implants, specifically for minimally invasive implantation of bone scaffolds, due to their rapid remote actuation, biocompatibility, and mechanical robustness. This research not only demonstrates the 4D printability of high-performance MSMPs but also introduces new possibilities for the application of MSMPs in regenerative medicine.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400090","citationCount":"0","resultStr":"{\"title\":\"4D Printing of Magneto-Thermo-Responsive PLA/PMMA/Fe3O4 Nanocomposites with Superior Shape Memory and Remote Actuation\",\"authors\":\"Hossein Doostmohammadi,&nbsp;Majid Baniassadi,&nbsp;Mahdi Bodaghi,&nbsp;Mostafa Baghani\",\"doi\":\"10.1002/mame.202400090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents the development and 4D printing of magnetic shape memory polymers (MSMPs) utilizing a composite of polylactic acid (PLA), polymethyl methacrylate (PMMA), and Fe<sub>3</sub>O<sub>4</sub> nanoparticles. The dynamic mechanical analysis reveals that the integration of Fe<sub>3</sub>O<sub>4</sub> maintains the broad thermal transition without significantly affecting α-relaxation time, indicating high compatibility and homogeneous distribution of the nanoparticles within the polymer matrix. Field emission scanning electron microscopy further confirms the high compatibility of PLA and PMMA phases as well as uniform dispersion of Fe<sub>3</sub>O<sub>4</sub> nanoparticles, essential for the effective transfer of heat during the shape memory process. Significantly, the incorporation of magnetic nanoparticles enables remote actuation capabilities, presenting a substantial advancement for biomedical applications. 4D-printed MSMP nanocomposites exhibit exceptional mechanical properties and rapid, efficient shape memory responses under both inductive and direct heating stimuli, achieving 100% shape fixity and 100% recovery within ≈85 s. They are proposed as promising candidates for biomedical implants, specifically for minimally invasive implantation of bone scaffolds, due to their rapid remote actuation, biocompatibility, and mechanical robustness. This research not only demonstrates the 4D printability of high-performance MSMPs but also introduces new possibilities for the application of MSMPs in regenerative medicine.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400090\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400090\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400090","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用聚乳酸(PLA)、聚甲基丙烯酸甲酯(PMMA)和 Fe3O4 纳米粒子的复合材料,介绍了磁性形状记忆聚合物(MSMP)的开发和 4D 印刷。动态力学分析表明,Fe3O4 的加入保持了宽热转变,而不会明显影响 α 松弛时间,这表明纳米粒子在聚合物基体中具有高度的兼容性和均匀分布。场发射扫描电子显微镜进一步证实了聚乳酸和 PMMA 相的高度相容性以及 Fe3O4 纳米粒子的均匀分布,这对于在形状记忆过程中有效传递热量至关重要。值得注意的是,磁性纳米粒子的加入实现了远程致动功能,为生物医学应用带来了巨大的进步。4D 印刷 MSMP 纳米复合材料在感应和直接加热刺激下均表现出优异的机械性能和快速、高效的形状记忆反应,在≈85 秒内实现了 100% 的形状固定和 100% 的恢复。这项研究不仅证明了高性能 MSMP 的 4D 打印能力,还为 MSMP 在再生医学中的应用带来了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

4D Printing of Magneto-Thermo-Responsive PLA/PMMA/Fe3O4 Nanocomposites with Superior Shape Memory and Remote Actuation

4D Printing of Magneto-Thermo-Responsive PLA/PMMA/Fe3O4 Nanocomposites with Superior Shape Memory and Remote Actuation

This study presents the development and 4D printing of magnetic shape memory polymers (MSMPs) utilizing a composite of polylactic acid (PLA), polymethyl methacrylate (PMMA), and Fe3O4 nanoparticles. The dynamic mechanical analysis reveals that the integration of Fe3O4 maintains the broad thermal transition without significantly affecting α-relaxation time, indicating high compatibility and homogeneous distribution of the nanoparticles within the polymer matrix. Field emission scanning electron microscopy further confirms the high compatibility of PLA and PMMA phases as well as uniform dispersion of Fe3O4 nanoparticles, essential for the effective transfer of heat during the shape memory process. Significantly, the incorporation of magnetic nanoparticles enables remote actuation capabilities, presenting a substantial advancement for biomedical applications. 4D-printed MSMP nanocomposites exhibit exceptional mechanical properties and rapid, efficient shape memory responses under both inductive and direct heating stimuli, achieving 100% shape fixity and 100% recovery within ≈85 s. They are proposed as promising candidates for biomedical implants, specifically for minimally invasive implantation of bone scaffolds, due to their rapid remote actuation, biocompatibility, and mechanical robustness. This research not only demonstrates the 4D printability of high-performance MSMPs but also introduces new possibilities for the application of MSMPs in regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信