Antonius J. P. Hopstaken, Enno Große Wichtrup, Dr. Seino A. K. Jongkees
{"title":"密码子大逃亡空缺密码子促进遗传密码扩展和核糖体停滞","authors":"Antonius J. P. Hopstaken, Enno Große Wichtrup, Dr. Seino A. K. Jongkees","doi":"10.1002/ijch.202400012","DOIUrl":null,"url":null,"abstract":"<p>In ribosomal synthesis of peptides and proteins, genetic information is translated into an amino acid polymer according to the genetic code, which describes the translational command encoded by each codon. However, parts of the genetic code can be adjusted to customize translations. One option is to remove decoding for a specific codon, resulting in a vacant codon. Such vacant codons can be used to stall the ribosome for mechanistic studies and display techniques. Alternatively, the liberated codon can be assigned to encode for incorporation of a noncanonical building block for expansion of the genetic code. In this review we provide an overview of the methods currently available for vacating codons in prokaryotic translation (agnostic of how these are later applied), targeting factors such as amino-acyl tRNA synthetases, tRNA, release factors, and the initiation machinery. Moreover, we assess applicability and compatibility of the currently available techniques and discuss which have the potential to develop into even more powerful approaches in the future.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 8-9","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202400012","citationCount":"0","resultStr":"{\"title\":\"The Great Codon Escape: Vacating Codons for Genetic Code Expansion and Ribosome Stalling\",\"authors\":\"Antonius J. P. Hopstaken, Enno Große Wichtrup, Dr. Seino A. K. Jongkees\",\"doi\":\"10.1002/ijch.202400012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In ribosomal synthesis of peptides and proteins, genetic information is translated into an amino acid polymer according to the genetic code, which describes the translational command encoded by each codon. However, parts of the genetic code can be adjusted to customize translations. One option is to remove decoding for a specific codon, resulting in a vacant codon. Such vacant codons can be used to stall the ribosome for mechanistic studies and display techniques. Alternatively, the liberated codon can be assigned to encode for incorporation of a noncanonical building block for expansion of the genetic code. In this review we provide an overview of the methods currently available for vacating codons in prokaryotic translation (agnostic of how these are later applied), targeting factors such as amino-acyl tRNA synthetases, tRNA, release factors, and the initiation machinery. Moreover, we assess applicability and compatibility of the currently available techniques and discuss which have the potential to develop into even more powerful approaches in the future.</p>\",\"PeriodicalId\":14686,\"journal\":{\"name\":\"Israel Journal of Chemistry\",\"volume\":\"64 8-9\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202400012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202400012\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202400012","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Great Codon Escape: Vacating Codons for Genetic Code Expansion and Ribosome Stalling
In ribosomal synthesis of peptides and proteins, genetic information is translated into an amino acid polymer according to the genetic code, which describes the translational command encoded by each codon. However, parts of the genetic code can be adjusted to customize translations. One option is to remove decoding for a specific codon, resulting in a vacant codon. Such vacant codons can be used to stall the ribosome for mechanistic studies and display techniques. Alternatively, the liberated codon can be assigned to encode for incorporation of a noncanonical building block for expansion of the genetic code. In this review we provide an overview of the methods currently available for vacating codons in prokaryotic translation (agnostic of how these are later applied), targeting factors such as amino-acyl tRNA synthetases, tRNA, release factors, and the initiation machinery. Moreover, we assess applicability and compatibility of the currently available techniques and discuss which have the potential to develop into even more powerful approaches in the future.
期刊介绍:
The fledgling State of Israel began to publish its scientific activity in 1951 under the general heading of Bulletin of the Research Council of Israel, which quickly split into sections to accommodate various fields in the growing academic community. In 1963, the Bulletin ceased publication and independent journals were born, with Section A becoming the new Israel Journal of Chemistry.
The Israel Journal of Chemistry is the official journal of the Israel Chemical Society. Effective from Volume 50 (2010) it is published by Wiley-VCH.
The Israel Journal of Chemistry is an international and peer-reviewed publication forum for Special Issues on timely research topics in all fields of chemistry: from biochemistry through organic and inorganic chemistry to polymer, physical and theoretical chemistry, including all interdisciplinary topics. Each topical issue is edited by one or several Guest Editors and primarily contains invited Review articles. Communications and Full Papers may be published occasionally, if they fit with the quality standards of the journal. The publication language is English and the journal is published twelve times a year.