水样中痕量六价铬离子的灵敏分光光度测定:基于合成/表征的特定任务离子液体的简单快速均质溶剂/原位溶剂形成微萃取法

IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL
Mehdi Hosseini, Seyyed Mehdi Khoshfetrat
{"title":"水样中痕量六价铬离子的灵敏分光光度测定:基于合成/表征的特定任务离子液体的简单快速均质溶剂/原位溶剂形成微萃取法","authors":"Mehdi Hosseini,&nbsp;Seyyed Mehdi Khoshfetrat","doi":"10.1007/s10953-024-01384-6","DOIUrl":null,"url":null,"abstract":"<div><p>The preconcentration of uranium VI (U(VI)) at trace levels in some real water and wastewater samples and its determination by spectrophotometry using a homogeneous solvent-based microextraction method, specifically in-situ solvent formation microextraction, were investigated. This microextraction method uses a unique task-specific ionic liquid (IL) as the specific complexing agent and/or extracting phase. A pyrrolidinium-based IL modified with (E)-5-(bromomethyl)-2-(pyridin-2-yldiazenyl) phenol as a task-specific IL (E)-1-(3-hydroxy-4-(pyridin-2-yldiazenyl) benzyl)-1-methylpyrrolidinium bromide (TSIL/Br) was successfully synthesized and characterized by <sup>1</sup>HNMR and FTIR analyses. TSIL/Br chelated with U(VI) ions in the aqueous phase to form a hydrophilic [U(VI)-TSIL/Br<sub>2</sub>] complex with high efficiency. It was then converted to a hydrophobic [U(VI)-TSIL/(NTf<sub>2</sub>)<sub>2</sub>] complex through a counter-ion agent, such as bis(trifluoromethanesulfonyl)imide (<span>\\(\\text{NTF}_2^-\\)</span>) for separation from the aqueous solution phase. This process eliminates the need for a separate complexing agent, because TSIL/Br acts simultaneously as both a complexing agent and an extracting solvent. In brief, the conditions of the microextraction process must be optimized for the analysis of real water samples. Under the optimum conditions, a preconcentration factor, detection limit, quantification limit, linear dynamic range, and relative standard deviation of 218, 1.62 ng·mL<sup>−1</sup>, 5.42 ng·mL<sup>−1</sup>, 20.0–450.0 ng·mL<sup>−1</sup>, and 2.47% (<i>n</i> = 10, 20 ng·mL<sup>−1</sup>) were obtained, respectively. Finally, to assess the method’s ability, it was successfully employed to determine the U(VI) ion content in various real water, wastewater and reference material samples.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitive Spectrophotometric Determination of U(VI) Ion at Trace Level in Water Samples: A Simple and Rapid Homogenous Solvent-Based/In-Situ Solvent Formation Microextraction Based on Synthesized/Characterized Task-Specific Ionic Liquid\",\"authors\":\"Mehdi Hosseini,&nbsp;Seyyed Mehdi Khoshfetrat\",\"doi\":\"10.1007/s10953-024-01384-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The preconcentration of uranium VI (U(VI)) at trace levels in some real water and wastewater samples and its determination by spectrophotometry using a homogeneous solvent-based microextraction method, specifically in-situ solvent formation microextraction, were investigated. This microextraction method uses a unique task-specific ionic liquid (IL) as the specific complexing agent and/or extracting phase. A pyrrolidinium-based IL modified with (E)-5-(bromomethyl)-2-(pyridin-2-yldiazenyl) phenol as a task-specific IL (E)-1-(3-hydroxy-4-(pyridin-2-yldiazenyl) benzyl)-1-methylpyrrolidinium bromide (TSIL/Br) was successfully synthesized and characterized by <sup>1</sup>HNMR and FTIR analyses. TSIL/Br chelated with U(VI) ions in the aqueous phase to form a hydrophilic [U(VI)-TSIL/Br<sub>2</sub>] complex with high efficiency. It was then converted to a hydrophobic [U(VI)-TSIL/(NTf<sub>2</sub>)<sub>2</sub>] complex through a counter-ion agent, such as bis(trifluoromethanesulfonyl)imide (<span>\\\\(\\\\text{NTF}_2^-\\\\)</span>) for separation from the aqueous solution phase. This process eliminates the need for a separate complexing agent, because TSIL/Br acts simultaneously as both a complexing agent and an extracting solvent. In brief, the conditions of the microextraction process must be optimized for the analysis of real water samples. Under the optimum conditions, a preconcentration factor, detection limit, quantification limit, linear dynamic range, and relative standard deviation of 218, 1.62 ng·mL<sup>−1</sup>, 5.42 ng·mL<sup>−1</sup>, 20.0–450.0 ng·mL<sup>−1</sup>, and 2.47% (<i>n</i> = 10, 20 ng·mL<sup>−1</sup>) were obtained, respectively. Finally, to assess the method’s ability, it was successfully employed to determine the U(VI) ion content in various real water, wastewater and reference material samples.</p></div>\",\"PeriodicalId\":666,\"journal\":{\"name\":\"Journal of Solution Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solution Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10953-024-01384-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solution Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-024-01384-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用一种基于均相溶剂的微萃取方法,特别是原位溶剂形成微萃取法,对一些实际水和废水样品中的痕量六价铀(U(VI))进行了预浓缩,并通过分光光度法对其进行了测定。这种微萃取方法使用一种独特的特定任务离子液体(IL)作为特定的络合剂和/或萃取相。成功合成了一种用(E)-5-(溴甲基)-2-(吡啶-2-基二氮烯基)苯酚修饰的吡咯烷基离子液体,作为任务特异性离子液体(E)-1-(3-羟基-4-(吡啶-2-基二氮烯基)苄基)-1-甲基吡咯烷溴化物(TSIL/Br),并通过 1HNMR 和 FTIR 分析对其进行了表征。TSIL/Br 在水相中与 U(VI)离子螯合,形成亲水性[U(VI)-TSIL/Br2]复合物,效率很高。然后通过双(三氟甲烷磺酰)亚胺(text{NTF}_2^-\)等反离子剂将其转化为疏水性的[U(VI)-TSIL/(NTf2)2]复合物,以便从水溶液相中分离出来。由于 TSIL/Br 同时充当络合剂和萃取溶剂,因此该工艺无需使用单独的络合剂。简而言之,微萃取过程的条件必须针对实际水样的分析进行优化。在最佳条件下,预浓缩因子、检测限、定量限、线性动态范围和相对标准偏差分别为 218、1.62 ng-mL-1、5.42 ng-mL-1、20.0-450.0 ng-mL-1 和 2.47%(n = 10,20 ng-mL-1)。最后,为了评估该方法的能力,成功地使用该方法测定了各种实际水、废水和参考物质样品中的六(U)离子含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sensitive Spectrophotometric Determination of U(VI) Ion at Trace Level in Water Samples: A Simple and Rapid Homogenous Solvent-Based/In-Situ Solvent Formation Microextraction Based on Synthesized/Characterized Task-Specific Ionic Liquid

Sensitive Spectrophotometric Determination of U(VI) Ion at Trace Level in Water Samples: A Simple and Rapid Homogenous Solvent-Based/In-Situ Solvent Formation Microextraction Based on Synthesized/Characterized Task-Specific Ionic Liquid

Sensitive Spectrophotometric Determination of U(VI) Ion at Trace Level in Water Samples: A Simple and Rapid Homogenous Solvent-Based/In-Situ Solvent Formation Microextraction Based on Synthesized/Characterized Task-Specific Ionic Liquid

The preconcentration of uranium VI (U(VI)) at trace levels in some real water and wastewater samples and its determination by spectrophotometry using a homogeneous solvent-based microextraction method, specifically in-situ solvent formation microextraction, were investigated. This microextraction method uses a unique task-specific ionic liquid (IL) as the specific complexing agent and/or extracting phase. A pyrrolidinium-based IL modified with (E)-5-(bromomethyl)-2-(pyridin-2-yldiazenyl) phenol as a task-specific IL (E)-1-(3-hydroxy-4-(pyridin-2-yldiazenyl) benzyl)-1-methylpyrrolidinium bromide (TSIL/Br) was successfully synthesized and characterized by 1HNMR and FTIR analyses. TSIL/Br chelated with U(VI) ions in the aqueous phase to form a hydrophilic [U(VI)-TSIL/Br2] complex with high efficiency. It was then converted to a hydrophobic [U(VI)-TSIL/(NTf2)2] complex through a counter-ion agent, such as bis(trifluoromethanesulfonyl)imide (\(\text{NTF}_2^-\)) for separation from the aqueous solution phase. This process eliminates the need for a separate complexing agent, because TSIL/Br acts simultaneously as both a complexing agent and an extracting solvent. In brief, the conditions of the microextraction process must be optimized for the analysis of real water samples. Under the optimum conditions, a preconcentration factor, detection limit, quantification limit, linear dynamic range, and relative standard deviation of 218, 1.62 ng·mL−1, 5.42 ng·mL−1, 20.0–450.0 ng·mL−1, and 2.47% (n = 10, 20 ng·mL−1) were obtained, respectively. Finally, to assess the method’s ability, it was successfully employed to determine the U(VI) ion content in various real water, wastewater and reference material samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Solution Chemistry
Journal of Solution Chemistry 化学-物理化学
CiteScore
2.30
自引率
0.00%
发文量
87
审稿时长
3-8 weeks
期刊介绍: Journal of Solution Chemistry offers a forum for research on the physical chemistry of liquid solutions in such fields as physical chemistry, chemical physics, molecular biology, statistical mechanics, biochemistry, and biophysics. The emphasis is on papers in which the solvent plays a dominant rather than incidental role. Featured topics include experimental investigations of the dielectric, spectroscopic, thermodynamic, transport, or relaxation properties of both electrolytes and nonelectrolytes in liquid solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信