L. M. Servino, J. M. G. Ferrarini, C. d. C. Nogueira, F. E. Barbo, R. J. Sawaya
{"title":"伯格曼和乔丹的规则对新热带蝮蛇有效吗?","authors":"L. M. Servino, J. M. G. Ferrarini, C. d. C. Nogueira, F. E. Barbo, R. J. Sawaya","doi":"10.1111/jzo.13193","DOIUrl":null,"url":null,"abstract":"<p>Morphological variation along the spatial distribution of species has been extensively investigated in ecological studies, and several ecogeographical rules explore the relationships between morphological traits and the environment. Many morphological traits are correlated, providing an opportunity to evaluate the validity of multiple ecogeographical rules simultaneously. Bergmann's rule predicts that endothermic animals in colder locations are larger than those in warmer locations. Jordan's rule predicts that fish from colder locations have more vertebrae than those from warmer locations. We tested the validity of Bergmann's and Jordan's rules for the neotropical lancehead snake <i>Bothrops jararaca</i>. We evaluated three morphological characters of 342 specimens: number of ventral scales (proxy for vertebrae number), snout–vent length (a linear measure of body size) and stoutness (volumetric body size). We implemented spatial regressions to evaluate the variation of morphological dimensions using climatic predictors: the minimum temperature and evapotranspiration. SVL was poorly related to minimum temperature and evapotranspiration. However, stouter individuals were found in colder places with greater evapotranspiration, following Bergmann's rule and the water conservation hypothesis. Individuals in warmer locations also had a greater number of ventral scales, reversing Jordan's rule. We showed that different selective pressures act on different morphological dimensions. Although stoutness follows Bergmann's rule, its variation would arise from an energy storage demand rather than heat conservation. Also, stoutness variation along evapotranspiration gradients could represent a mechanism to avoid hydric stress in environments with considerable climatic variations. The variation in vertebrae number along temperature gradients could be related to ecological factors and foraging. We highlight that physioecological mechanisms to deal with climatic variation and ecological aspects could be identified in snakes through intraspecific analyses, contrasting with interspecific studies that can hardly detect general trends. Due to different environmental effects on body size, we shed new light on the importance of exploring multiple morphological dimensions in macroecological studies.</p>","PeriodicalId":17600,"journal":{"name":"Journal of Zoology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Are Bergmann's and Jordan's rules valid for a neotropical pitviper?\",\"authors\":\"L. M. Servino, J. M. G. Ferrarini, C. d. C. Nogueira, F. E. Barbo, R. J. Sawaya\",\"doi\":\"10.1111/jzo.13193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Morphological variation along the spatial distribution of species has been extensively investigated in ecological studies, and several ecogeographical rules explore the relationships between morphological traits and the environment. Many morphological traits are correlated, providing an opportunity to evaluate the validity of multiple ecogeographical rules simultaneously. Bergmann's rule predicts that endothermic animals in colder locations are larger than those in warmer locations. Jordan's rule predicts that fish from colder locations have more vertebrae than those from warmer locations. We tested the validity of Bergmann's and Jordan's rules for the neotropical lancehead snake <i>Bothrops jararaca</i>. We evaluated three morphological characters of 342 specimens: number of ventral scales (proxy for vertebrae number), snout–vent length (a linear measure of body size) and stoutness (volumetric body size). We implemented spatial regressions to evaluate the variation of morphological dimensions using climatic predictors: the minimum temperature and evapotranspiration. SVL was poorly related to minimum temperature and evapotranspiration. However, stouter individuals were found in colder places with greater evapotranspiration, following Bergmann's rule and the water conservation hypothesis. Individuals in warmer locations also had a greater number of ventral scales, reversing Jordan's rule. We showed that different selective pressures act on different morphological dimensions. Although stoutness follows Bergmann's rule, its variation would arise from an energy storage demand rather than heat conservation. Also, stoutness variation along evapotranspiration gradients could represent a mechanism to avoid hydric stress in environments with considerable climatic variations. The variation in vertebrae number along temperature gradients could be related to ecological factors and foraging. We highlight that physioecological mechanisms to deal with climatic variation and ecological aspects could be identified in snakes through intraspecific analyses, contrasting with interspecific studies that can hardly detect general trends. Due to different environmental effects on body size, we shed new light on the importance of exploring multiple morphological dimensions in macroecological studies.</p>\",\"PeriodicalId\":17600,\"journal\":{\"name\":\"Journal of Zoology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jzo.13193\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zoology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jzo.13193","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Are Bergmann's and Jordan's rules valid for a neotropical pitviper?
Morphological variation along the spatial distribution of species has been extensively investigated in ecological studies, and several ecogeographical rules explore the relationships between morphological traits and the environment. Many morphological traits are correlated, providing an opportunity to evaluate the validity of multiple ecogeographical rules simultaneously. Bergmann's rule predicts that endothermic animals in colder locations are larger than those in warmer locations. Jordan's rule predicts that fish from colder locations have more vertebrae than those from warmer locations. We tested the validity of Bergmann's and Jordan's rules for the neotropical lancehead snake Bothrops jararaca. We evaluated three morphological characters of 342 specimens: number of ventral scales (proxy for vertebrae number), snout–vent length (a linear measure of body size) and stoutness (volumetric body size). We implemented spatial regressions to evaluate the variation of morphological dimensions using climatic predictors: the minimum temperature and evapotranspiration. SVL was poorly related to minimum temperature and evapotranspiration. However, stouter individuals were found in colder places with greater evapotranspiration, following Bergmann's rule and the water conservation hypothesis. Individuals in warmer locations also had a greater number of ventral scales, reversing Jordan's rule. We showed that different selective pressures act on different morphological dimensions. Although stoutness follows Bergmann's rule, its variation would arise from an energy storage demand rather than heat conservation. Also, stoutness variation along evapotranspiration gradients could represent a mechanism to avoid hydric stress in environments with considerable climatic variations. The variation in vertebrae number along temperature gradients could be related to ecological factors and foraging. We highlight that physioecological mechanisms to deal with climatic variation and ecological aspects could be identified in snakes through intraspecific analyses, contrasting with interspecific studies that can hardly detect general trends. Due to different environmental effects on body size, we shed new light on the importance of exploring multiple morphological dimensions in macroecological studies.
期刊介绍:
The Journal of Zoology publishes high-quality research papers that are original and are of broad interest. The Editors seek studies that are hypothesis-driven and interdisciplinary in nature. Papers on animal behaviour, ecology, physiology, anatomy, developmental biology, evolution, systematics, genetics and genomics will be considered; research that explores the interface between these disciplines is strongly encouraged. Studies dealing with geographically and/or taxonomically restricted topics should test general hypotheses, describe novel findings or have broad implications.
The Journal of Zoology aims to maintain an effective but fair peer-review process that recognises research quality as a combination of the relevance, approach and execution of a research study.