通过生物启发离子通道实现超长寿命锰离子电池的锰离子超流态化

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Fan Zhang, Ting Liao, Dongchen Qi, Tony Wang, Yanan Xu, Wei Luo, Cheng Yan, Lei Jiang, Ziqi Sun
{"title":"通过生物启发离子通道实现超长寿命锰离子电池的锰离子超流态化","authors":"Fan Zhang, Ting Liao, Dongchen Qi, Tony Wang, Yanan Xu, Wei Luo, Cheng Yan, Lei Jiang, Ziqi Sun","doi":"10.1093/nsr/nwae199","DOIUrl":null,"url":null,"abstract":"\n Rechargeable aqueous Zn-ion batteries have been deemed as a promising energy storage device. However, the dendrite growth and side reactions have hindered their practical application. Herein, inspired by the ultrafluidic and K+ ion-sieving flux through enzyme-gated potassium channels (KcsA) in biological plasma membranes, a metal-organic-framework (MOF-5) grafted with –ClO4 groups as functional enzymes is fabricated to mimic the ultrafluidic lipid-bilayer structure for gating Zn2+ ‘on’ and anions ‘off’ states. Resulting from the perfect Zn2+/SO42− selectivity (∼10), enhanced Zn2+ transfer number (${t}_{{\\rm{Z}}{{\\rm{n}}}^{2 + }} = 0.88$) and the ultrafluidic Zn2+ flux (1.9 × 10−3 vs. 1.67 mmol m−2 s−1 for KcsA). The symmetric cells achieve a lifespan of over 5400 h at 10 mA cm−2/20 mAh cm−2. Specifically, the performance of the PMCl-Zn//V2O5 pouch cell keeps 81% capacity after 2000 cycles at 1 A g−1. The regulated ion transport by learning from biological plasma membrane opens a new venue towards ultralong lifespan aqueous batteries.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"12 4","pages":""},"PeriodicalIF":18.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zn-ion ultrafluidity via bioinspired ion channel for ultralong lifespan Zn-ion battery\",\"authors\":\"Fan Zhang, Ting Liao, Dongchen Qi, Tony Wang, Yanan Xu, Wei Luo, Cheng Yan, Lei Jiang, Ziqi Sun\",\"doi\":\"10.1093/nsr/nwae199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Rechargeable aqueous Zn-ion batteries have been deemed as a promising energy storage device. However, the dendrite growth and side reactions have hindered their practical application. Herein, inspired by the ultrafluidic and K+ ion-sieving flux through enzyme-gated potassium channels (KcsA) in biological plasma membranes, a metal-organic-framework (MOF-5) grafted with –ClO4 groups as functional enzymes is fabricated to mimic the ultrafluidic lipid-bilayer structure for gating Zn2+ ‘on’ and anions ‘off’ states. Resulting from the perfect Zn2+/SO42− selectivity (∼10), enhanced Zn2+ transfer number (${t}_{{\\\\rm{Z}}{{\\\\rm{n}}}^{2 + }} = 0.88$) and the ultrafluidic Zn2+ flux (1.9 × 10−3 vs. 1.67 mmol m−2 s−1 for KcsA). The symmetric cells achieve a lifespan of over 5400 h at 10 mA cm−2/20 mAh cm−2. Specifically, the performance of the PMCl-Zn//V2O5 pouch cell keeps 81% capacity after 2000 cycles at 1 A g−1. The regulated ion transport by learning from biological plasma membrane opens a new venue towards ultralong lifespan aqueous batteries.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"12 4\",\"pages\":\"\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwae199\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae199","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

可充电水基锌离子电池被认为是一种前景广阔的储能装置。然而,枝晶生长和副反应阻碍了它们的实际应用。本文受生物质膜中酶门控钾通道(KcsA)的超流体和 K+ 离子流的启发,制作了一种接枝了 -ClO4 基团作为功能酶的金属有机框架 (MOF-5),以模拟超流体脂质层结构,用于门控 Zn2+ 的 "开 "和阴离子的 "关 "状态。由于具有完美的 Zn2+/SO42- 选择性(∼10),增强了 Zn2+ 传递数(${t}_{\rm{Z}}{\rm{n}}^{2 + }} = 0.88$)和超流体 Zn2+ 通量(1.9 × 10-3 对比起 KcsA 的 1.67 mmol m-2 s-1)。在 10 mA cm-2/20 mAh cm-2 的条件下,对称电池的寿命超过 5400 小时。具体来说,PMC-Zn//V2O5 袋状电池在 1 A g-1 的条件下循环 2000 次后,仍能保持 81% 的容量。借鉴生物质膜的离子传输调节技术为超长寿命水性电池开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zn-ion ultrafluidity via bioinspired ion channel for ultralong lifespan Zn-ion battery
Rechargeable aqueous Zn-ion batteries have been deemed as a promising energy storage device. However, the dendrite growth and side reactions have hindered their practical application. Herein, inspired by the ultrafluidic and K+ ion-sieving flux through enzyme-gated potassium channels (KcsA) in biological plasma membranes, a metal-organic-framework (MOF-5) grafted with –ClO4 groups as functional enzymes is fabricated to mimic the ultrafluidic lipid-bilayer structure for gating Zn2+ ‘on’ and anions ‘off’ states. Resulting from the perfect Zn2+/SO42− selectivity (∼10), enhanced Zn2+ transfer number (${t}_{{\rm{Z}}{{\rm{n}}}^{2 + }} = 0.88$) and the ultrafluidic Zn2+ flux (1.9 × 10−3 vs. 1.67 mmol m−2 s−1 for KcsA). The symmetric cells achieve a lifespan of over 5400 h at 10 mA cm−2/20 mAh cm−2. Specifically, the performance of the PMCl-Zn//V2O5 pouch cell keeps 81% capacity after 2000 cycles at 1 A g−1. The regulated ion transport by learning from biological plasma membrane opens a new venue towards ultralong lifespan aqueous batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信