H. Adamas-Pérez, M. Ponce-Silva, J. D. Mina-Antonio, Abraham Claudio-Sánchez, Omar Rodríguez-Benítez, Ó. M. Rodríguez-Benítez
{"title":"通过微型逆变器与电网连接的单相光伏系统的新型 LCL 滤波器设计方法","authors":"H. Adamas-Pérez, M. Ponce-Silva, J. D. Mina-Antonio, Abraham Claudio-Sánchez, Omar Rodríguez-Benítez, Ó. M. Rodríguez-Benítez","doi":"10.3390/technologies12060089","DOIUrl":null,"url":null,"abstract":"This paper aims to propose a new sizing approach to reduce the footprint and optimize the performance of an LCL filter implemented in photovoltaic systems using grid-connected single-phase microinverters. In particular, the analysis is carried out on a single-phase full-bridge inverter, assuming the following two conditions: (1) a unit power factor at the connection point between the AC grid and the LCL filter; (2) a control circuit based on unipolar sinusoidal pulse width modulation (SPWM). In particular, the ripple and harmonics of the LCL filter input current and the current injected into the grid are analyzed. The results of the Simulink simulation and the experimental tests carried out confirm that it is possible to considerably reduce filter volume by optimizing each passive component compared with what is already available in the literature while guaranteeing excellent filtering performance. Specifically, the inductance values were reduced by almost 40% and the capacitor value by almost 100%. The main applications of this new design methodology are for use in single-phase microinverters connected to the grid and for research purposes in power electronics and optimization.","PeriodicalId":504839,"journal":{"name":"Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New LCL Filter Design Method for Single-Phase Photovoltaic Systems Connected to the Grid via Micro-Inverters\",\"authors\":\"H. Adamas-Pérez, M. Ponce-Silva, J. D. Mina-Antonio, Abraham Claudio-Sánchez, Omar Rodríguez-Benítez, Ó. M. Rodríguez-Benítez\",\"doi\":\"10.3390/technologies12060089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to propose a new sizing approach to reduce the footprint and optimize the performance of an LCL filter implemented in photovoltaic systems using grid-connected single-phase microinverters. In particular, the analysis is carried out on a single-phase full-bridge inverter, assuming the following two conditions: (1) a unit power factor at the connection point between the AC grid and the LCL filter; (2) a control circuit based on unipolar sinusoidal pulse width modulation (SPWM). In particular, the ripple and harmonics of the LCL filter input current and the current injected into the grid are analyzed. The results of the Simulink simulation and the experimental tests carried out confirm that it is possible to considerably reduce filter volume by optimizing each passive component compared with what is already available in the literature while guaranteeing excellent filtering performance. Specifically, the inductance values were reduced by almost 40% and the capacitor value by almost 100%. The main applications of this new design methodology are for use in single-phase microinverters connected to the grid and for research purposes in power electronics and optimization.\",\"PeriodicalId\":504839,\"journal\":{\"name\":\"Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/technologies12060089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/technologies12060089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New LCL Filter Design Method for Single-Phase Photovoltaic Systems Connected to the Grid via Micro-Inverters
This paper aims to propose a new sizing approach to reduce the footprint and optimize the performance of an LCL filter implemented in photovoltaic systems using grid-connected single-phase microinverters. In particular, the analysis is carried out on a single-phase full-bridge inverter, assuming the following two conditions: (1) a unit power factor at the connection point between the AC grid and the LCL filter; (2) a control circuit based on unipolar sinusoidal pulse width modulation (SPWM). In particular, the ripple and harmonics of the LCL filter input current and the current injected into the grid are analyzed. The results of the Simulink simulation and the experimental tests carried out confirm that it is possible to considerably reduce filter volume by optimizing each passive component compared with what is already available in the literature while guaranteeing excellent filtering performance. Specifically, the inductance values were reduced by almost 40% and the capacitor value by almost 100%. The main applications of this new design methodology are for use in single-phase microinverters connected to the grid and for research purposes in power electronics and optimization.