Resham Rana, Nicholas Hopper, François Sidoroff, Juliette Cayer-Barrioz, Denis Mazuyer, Wilfred T. Tysoe
{"title":"依赖剪切力的机械化学反应动力学分析","authors":"Resham Rana, Nicholas Hopper, François Sidoroff, Juliette Cayer-Barrioz, Denis Mazuyer, Wilfred T. Tysoe","doi":"10.1007/s11249-024-01879-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper shows how the effect of combined normal and shear stresses on the rates of tribochemical reactions can be calculated using Evans-Polanyi (E-P) perturbation theory. The E-P approach is based on transition-state theory, where the rate of reaction is taken to be proportional to the concentration of activated complex. The equilibrium constant depends on the molar Gibbs free energy change between the initial- and transition-states, which, in turn, depends on the stresses. E-P theory has been used previously to successfully calculate the effects of normal stresses on reaction rates. In this case, ln(Rate) varies linearly with stress with a slope given by an activation volume, which broadly corresponds to the volume difference between the reactant and activated complex. An advantage of E-P theory is that it can calculate the influence of several perturbations, for example, the normal stress dependence of the shear stress during sliding. In this paper, E-P theory is used to calculate shear-induced, tribochemical reaction rates. The results depend on four elementary activation volumes for different contributions to the Gibbs free energy: two of them due to normal and shear stresses for sliding over the surface and two more for the surface reaction. The results of the calculations show that there is a linear dependence of ln(Rate) on the normal stress but that the coefficient of proportionality between the ln(Rate) and the normal stress now has contributions from all elementary-step activation volumes. Counterintuitively, the analysis predicts that the ln(Rate)-normal stress evolution tends, at zero normal stress, to an asymptotic rate constant that depends on sliding velocity and differs from the thermal reaction rate. The theoretical prediction is verified for the shear-induced decomposition of ethyl thiolate species adsorbed on a Cu(100) single crystal substrate that decomposes by C‒S bond cleavage. The theoretical analyses show that tribochemical reactions can be influenced by either just normal stresses or by a combination of normal and shear stresses, but that the latter effect is much greater. Finally, it is predicted that there should be a linear relationship between the activation energy and the logarithm of the pre-exponential factor of the asymptotic rate constant.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Analysis of Shear-Dependent Mechanochemical Reaction Kinetics\",\"authors\":\"Resham Rana, Nicholas Hopper, François Sidoroff, Juliette Cayer-Barrioz, Denis Mazuyer, Wilfred T. Tysoe\",\"doi\":\"10.1007/s11249-024-01879-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper shows how the effect of combined normal and shear stresses on the rates of tribochemical reactions can be calculated using Evans-Polanyi (E-P) perturbation theory. The E-P approach is based on transition-state theory, where the rate of reaction is taken to be proportional to the concentration of activated complex. The equilibrium constant depends on the molar Gibbs free energy change between the initial- and transition-states, which, in turn, depends on the stresses. E-P theory has been used previously to successfully calculate the effects of normal stresses on reaction rates. In this case, ln(Rate) varies linearly with stress with a slope given by an activation volume, which broadly corresponds to the volume difference between the reactant and activated complex. An advantage of E-P theory is that it can calculate the influence of several perturbations, for example, the normal stress dependence of the shear stress during sliding. In this paper, E-P theory is used to calculate shear-induced, tribochemical reaction rates. The results depend on four elementary activation volumes for different contributions to the Gibbs free energy: two of them due to normal and shear stresses for sliding over the surface and two more for the surface reaction. The results of the calculations show that there is a linear dependence of ln(Rate) on the normal stress but that the coefficient of proportionality between the ln(Rate) and the normal stress now has contributions from all elementary-step activation volumes. Counterintuitively, the analysis predicts that the ln(Rate)-normal stress evolution tends, at zero normal stress, to an asymptotic rate constant that depends on sliding velocity and differs from the thermal reaction rate. The theoretical prediction is verified for the shear-induced decomposition of ethyl thiolate species adsorbed on a Cu(100) single crystal substrate that decomposes by C‒S bond cleavage. The theoretical analyses show that tribochemical reactions can be influenced by either just normal stresses or by a combination of normal and shear stresses, but that the latter effect is much greater. Finally, it is predicted that there should be a linear relationship between the activation energy and the logarithm of the pre-exponential factor of the asymptotic rate constant.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-024-01879-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01879-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
An Analysis of Shear-Dependent Mechanochemical Reaction Kinetics
This paper shows how the effect of combined normal and shear stresses on the rates of tribochemical reactions can be calculated using Evans-Polanyi (E-P) perturbation theory. The E-P approach is based on transition-state theory, where the rate of reaction is taken to be proportional to the concentration of activated complex. The equilibrium constant depends on the molar Gibbs free energy change between the initial- and transition-states, which, in turn, depends on the stresses. E-P theory has been used previously to successfully calculate the effects of normal stresses on reaction rates. In this case, ln(Rate) varies linearly with stress with a slope given by an activation volume, which broadly corresponds to the volume difference between the reactant and activated complex. An advantage of E-P theory is that it can calculate the influence of several perturbations, for example, the normal stress dependence of the shear stress during sliding. In this paper, E-P theory is used to calculate shear-induced, tribochemical reaction rates. The results depend on four elementary activation volumes for different contributions to the Gibbs free energy: two of them due to normal and shear stresses for sliding over the surface and two more for the surface reaction. The results of the calculations show that there is a linear dependence of ln(Rate) on the normal stress but that the coefficient of proportionality between the ln(Rate) and the normal stress now has contributions from all elementary-step activation volumes. Counterintuitively, the analysis predicts that the ln(Rate)-normal stress evolution tends, at zero normal stress, to an asymptotic rate constant that depends on sliding velocity and differs from the thermal reaction rate. The theoretical prediction is verified for the shear-induced decomposition of ethyl thiolate species adsorbed on a Cu(100) single crystal substrate that decomposes by C‒S bond cleavage. The theoretical analyses show that tribochemical reactions can be influenced by either just normal stresses or by a combination of normal and shear stresses, but that the latter effect is much greater. Finally, it is predicted that there should be a linear relationship between the activation energy and the logarithm of the pre-exponential factor of the asymptotic rate constant.
期刊介绍:
Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.