在面向自旋电子器件的外延铂(3 nm)/Fe4N(≤6 nm)/氧化镁异质结构中展示电流驱动的反常霍尔电阻率

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaohui Shi*, Lulu Du, Ke Xiao, Qingming Ping, Xiaoyan Sun and Wenbo Mi, 
{"title":"在面向自旋电子器件的外延铂(3 nm)/Fe4N(≤6 nm)/氧化镁异质结构中展示电流驱动的反常霍尔电阻率","authors":"Xiaohui Shi*,&nbsp;Lulu Du,&nbsp;Ke Xiao,&nbsp;Qingming Ping,&nbsp;Xiaoyan Sun and Wenbo Mi,&nbsp;","doi":"10.1021/acsanm.4c02261","DOIUrl":null,"url":null,"abstract":"<p >Current-induced spin–orbit torque (SOT) in heavy metal/ferromagnets can be used to manipulate the magnetization and electronic transport properties for logic and memory operations. Significantly, Fe<sub>4</sub>N shows an in-plane magnetic anisotropy at larger thicknesses but enters a noncollinear magnetic phase at suitably nanoscale thicknesses. Here, the electronic transport properties of Pt(3 nm)/Fe<sub>4</sub>N(<i>t</i><sub>Fe4N</sub> ≤ 6 nm)/MgO(sub)structures were investigated. Current-driven anomalous Hall resistivity ρ<sub>AHE</sub> changes appear due to SOT. Moreover, sign reversal of Hall resistivity ρ<sub><i>xy</i></sub> occurs due to the competition between the magnetic proximity effect and inverse spin Hall effect. A model based on the above contributions was built to demonstrate how torque changes with increasing charge current and why sign reversal of ρ<sub><i>xy</i></sub> occurs.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstrating Current-Driven Anomalous Hall Resistivity in Epitaxial Pt(3 nm)/Fe4N(≤6 nm)/MgO Heterostructures toward Spintronic Devices\",\"authors\":\"Xiaohui Shi*,&nbsp;Lulu Du,&nbsp;Ke Xiao,&nbsp;Qingming Ping,&nbsp;Xiaoyan Sun and Wenbo Mi,&nbsp;\",\"doi\":\"10.1021/acsanm.4c02261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Current-induced spin–orbit torque (SOT) in heavy metal/ferromagnets can be used to manipulate the magnetization and electronic transport properties for logic and memory operations. Significantly, Fe<sub>4</sub>N shows an in-plane magnetic anisotropy at larger thicknesses but enters a noncollinear magnetic phase at suitably nanoscale thicknesses. Here, the electronic transport properties of Pt(3 nm)/Fe<sub>4</sub>N(<i>t</i><sub>Fe4N</sub> ≤ 6 nm)/MgO(sub)structures were investigated. Current-driven anomalous Hall resistivity ρ<sub>AHE</sub> changes appear due to SOT. Moreover, sign reversal of Hall resistivity ρ<sub><i>xy</i></sub> occurs due to the competition between the magnetic proximity effect and inverse spin Hall effect. A model based on the above contributions was built to demonstrate how torque changes with increasing charge current and why sign reversal of ρ<sub><i>xy</i></sub> occurs.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c02261\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c02261","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

重金属/铁磁体中的电流诱导自旋轨道力矩(SOT)可用于操纵磁化和电子传输特性,以实现逻辑和存储操作。值得注意的是,Fe4N 在厚度较大时显示出平面内磁各向异性,但在适当的纳米级厚度时则进入非共轭磁性阶段。在此,我们研究了 Pt(3 nm)/Fe4N(tFe4N ≤ 6 nm)/MgO(sub) 结构的电子传输特性。电流驱动的反常霍尔电阻率 ρAHE 变化是由 SOT 引起的。此外,由于磁接近效应和反自旋霍尔效应之间的竞争,霍尔电阻率 ρxy 发生了符号反转。我们根据上述贡献建立了一个模型,以说明转矩如何随着电荷电流的增加而变化,以及为什么会出现 ρxy 符号反转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Demonstrating Current-Driven Anomalous Hall Resistivity in Epitaxial Pt(3 nm)/Fe4N(≤6 nm)/MgO Heterostructures toward Spintronic Devices

Demonstrating Current-Driven Anomalous Hall Resistivity in Epitaxial Pt(3 nm)/Fe4N(≤6 nm)/MgO Heterostructures toward Spintronic Devices

Current-induced spin–orbit torque (SOT) in heavy metal/ferromagnets can be used to manipulate the magnetization and electronic transport properties for logic and memory operations. Significantly, Fe4N shows an in-plane magnetic anisotropy at larger thicknesses but enters a noncollinear magnetic phase at suitably nanoscale thicknesses. Here, the electronic transport properties of Pt(3 nm)/Fe4N(tFe4N ≤ 6 nm)/MgO(sub)structures were investigated. Current-driven anomalous Hall resistivity ρAHE changes appear due to SOT. Moreover, sign reversal of Hall resistivity ρxy occurs due to the competition between the magnetic proximity effect and inverse spin Hall effect. A model based on the above contributions was built to demonstrate how torque changes with increasing charge current and why sign reversal of ρxy occurs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信