{"title":"通过石墨烯相关碳材料的进步加深对量子电容的理解","authors":"Rui Tang","doi":"10.1007/s42823-024-00761-x","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene shows unique electron-transport properties owing to the density of its carriers near the Dirac point. The quantum capacitance (<i>C</i><sub>Q</sub>) of graphene is an intrinsic property that has been investigated theoretically in many previous studies. However, the development of <i>C</i><sub>Q</sub> theory is hindered by the limited availability of related experimental works. In this perspective, experimental works on the <i>C</i><sub>Q</sub> of mechanically exfoliated graphene, graphene synthesized by chemical vapor deposition (CVD), and graphene mesosponge are briefly summarized. The impact of structural properties such as stacking layers, defects, and nitrogen doping on <i>C</i><sub>Q</sub> was experimentally investigated. Furthermore, the applicability of <i>C</i><sub>Q</sub> theory was extended to three-dimensional graphene frameworks. Future research on CVD-synthesized and three-dimensional graphene is expected to enhance our comprehension of the underlying nature of <i>C</i><sub>Q</sub>.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 7","pages":"1845 - 1849"},"PeriodicalIF":5.5000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of the understanding of quantum capacitance through advancements in graphene-related carbon materials\",\"authors\":\"Rui Tang\",\"doi\":\"10.1007/s42823-024-00761-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graphene shows unique electron-transport properties owing to the density of its carriers near the Dirac point. The quantum capacitance (<i>C</i><sub>Q</sub>) of graphene is an intrinsic property that has been investigated theoretically in many previous studies. However, the development of <i>C</i><sub>Q</sub> theory is hindered by the limited availability of related experimental works. In this perspective, experimental works on the <i>C</i><sub>Q</sub> of mechanically exfoliated graphene, graphene synthesized by chemical vapor deposition (CVD), and graphene mesosponge are briefly summarized. The impact of structural properties such as stacking layers, defects, and nitrogen doping on <i>C</i><sub>Q</sub> was experimentally investigated. Furthermore, the applicability of <i>C</i><sub>Q</sub> theory was extended to three-dimensional graphene frameworks. Future research on CVD-synthesized and three-dimensional graphene is expected to enhance our comprehension of the underlying nature of <i>C</i><sub>Q</sub>.</p></div>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"34 7\",\"pages\":\"1845 - 1849\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42823-024-00761-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00761-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Evolution of the understanding of quantum capacitance through advancements in graphene-related carbon materials
Graphene shows unique electron-transport properties owing to the density of its carriers near the Dirac point. The quantum capacitance (CQ) of graphene is an intrinsic property that has been investigated theoretically in many previous studies. However, the development of CQ theory is hindered by the limited availability of related experimental works. In this perspective, experimental works on the CQ of mechanically exfoliated graphene, graphene synthesized by chemical vapor deposition (CVD), and graphene mesosponge are briefly summarized. The impact of structural properties such as stacking layers, defects, and nitrogen doping on CQ was experimentally investigated. Furthermore, the applicability of CQ theory was extended to three-dimensional graphene frameworks. Future research on CVD-synthesized and three-dimensional graphene is expected to enhance our comprehension of the underlying nature of CQ.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.