二元混合数及其混合矩阵表示法

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Anıl Altınkaya, Mustafa Çalışkan
{"title":"二元混合数及其混合矩阵表示法","authors":"Anıl Altınkaya,&nbsp;Mustafa Çalışkan","doi":"10.1007/s40010-024-00878-8","DOIUrl":null,"url":null,"abstract":"<div><p>Hybrid numbers are introduced as a linear combination of complex, dual and hyperbolic numbers, where hybrid units satisfy <span>\\(i^{2}=-1\\)</span>, <span>\\(\\epsilon ^{2}=0\\)</span> and <span>\\(h^{2}=1\\)</span>, respectively. The main motivation of this study is to present dual hybrid numbers and dual hybrid matrices. In this context, we first give some results of hybrid numbers related to complex and hyperbolic numbers. Afterward, we define hybrid matrix representation of a dual hybrid matrix by introducing dual hybrid matrices whose elements consist of dual hybrid numbers. Since dual hybrid numbers are not commutative, it is necessary to examine the right and left eigenvalues of dual hybrid matrices separately. In this article, we focus on the right eigenvalues of dual hybrid matrices and give some of their properties. Finally, we provide hybrid matrix representations of dual hybrid numbers and support our results with an example</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Hybrid Numbers and Their Hybrid Matrix Representations\",\"authors\":\"Anıl Altınkaya,&nbsp;Mustafa Çalışkan\",\"doi\":\"10.1007/s40010-024-00878-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hybrid numbers are introduced as a linear combination of complex, dual and hyperbolic numbers, where hybrid units satisfy <span>\\\\(i^{2}=-1\\\\)</span>, <span>\\\\(\\\\epsilon ^{2}=0\\\\)</span> and <span>\\\\(h^{2}=1\\\\)</span>, respectively. The main motivation of this study is to present dual hybrid numbers and dual hybrid matrices. In this context, we first give some results of hybrid numbers related to complex and hyperbolic numbers. Afterward, we define hybrid matrix representation of a dual hybrid matrix by introducing dual hybrid matrices whose elements consist of dual hybrid numbers. Since dual hybrid numbers are not commutative, it is necessary to examine the right and left eigenvalues of dual hybrid matrices separately. In this article, we focus on the right eigenvalues of dual hybrid matrices and give some of their properties. Finally, we provide hybrid matrix representations of dual hybrid numbers and support our results with an example</p></div>\",\"PeriodicalId\":744,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40010-024-00878-8\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-024-00878-8","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

混合数是复数、对偶数和双曲数的线性组合,其中混合单元分别满足(i^{2}=-1)、(epsilon ^{2}=0)和(h^{2}=1)。这项研究的主要动机是提出对偶混合数和对偶混合矩阵。在此背景下,我们首先给出一些与复数和双曲数相关的混合数结果。之后,我们通过引入元素由对偶混合数组成的对偶混合矩阵,定义了对偶混合矩阵的混合矩阵表示。由于对偶混合数不是交换数,因此有必要分别研究对偶混合矩阵的左右特征值。在本文中,我们将重点研究对偶混合矩阵的右特征值,并给出它们的一些性质。最后,我们将提供对偶混合数的混合矩阵表示,并通过一个例子来支持我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual Hybrid Numbers and Their Hybrid Matrix Representations

Hybrid numbers are introduced as a linear combination of complex, dual and hyperbolic numbers, where hybrid units satisfy \(i^{2}=-1\), \(\epsilon ^{2}=0\) and \(h^{2}=1\), respectively. The main motivation of this study is to present dual hybrid numbers and dual hybrid matrices. In this context, we first give some results of hybrid numbers related to complex and hyperbolic numbers. Afterward, we define hybrid matrix representation of a dual hybrid matrix by introducing dual hybrid matrices whose elements consist of dual hybrid numbers. Since dual hybrid numbers are not commutative, it is necessary to examine the right and left eigenvalues of dual hybrid matrices separately. In this article, we focus on the right eigenvalues of dual hybrid matrices and give some of their properties. Finally, we provide hybrid matrix representations of dual hybrid numbers and support our results with an example

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信