废弃深层富水路面重建和挖掘过程中应力、渗流和损坏的耦合效应

IF 1.3 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL
Yunchen Deng, Yi Luo, D. Qu, Xuan Zhang, Xin Liu, Han Luo, Xinping Li
{"title":"废弃深层富水路面重建和挖掘过程中应力、渗流和损坏的耦合效应","authors":"Yunchen Deng, Yi Luo, D. Qu, Xuan Zhang, Xin Liu, Han Luo, Xinping Li","doi":"10.1144/qjegh2024-014","DOIUrl":null,"url":null,"abstract":"A stress-seepage-damage coupling model considering the long-term creep of deep rock mass was established to study the mechanism of evolution of stability of the surrounding rock during reconstruction and excavation of abandoned deep water-rich roadways in the mine. The research shows that the maximum compressive stress in the circular cavern is significantly lower than that in the horseshoe-shaped cavern. Stress is distributed more uniformly in the circular cavern, and appropriately enlarging the size of the reconstructed excavation site can improve the stability of the surrounding rock. As the creep duration for abandoned roadways increases from one to nine years, the growth rates for vault settlement and horizontal clearance convergence remain constant and the roadway undergoes steady-state creep. With the increasing burial depth of the abandoned roadway (200 ∼ 400 m), a pressure arch is gradually formed in the roadway roof in the reconstruction and mining process. The surrounding rock forms a 'self-bearing structure' with arch mechanical characteristics and load transfer mechanism to maintain its own stability, and the overall bearing capacity of the surrounding rock is greatly improved. However, once the burial depth exceeds 400 m, the effect of the pressure arch begins to diminish with further increases in burial depth. Furthermore, pore water pressure significantly weakens the surrounding rocks.","PeriodicalId":20937,"journal":{"name":"Quarterly Journal of Engineering Geology and Hydrogeology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupling effects of stress, seepage and damage during reconstruction and excavation of abandoned deep water-rich roadways\",\"authors\":\"Yunchen Deng, Yi Luo, D. Qu, Xuan Zhang, Xin Liu, Han Luo, Xinping Li\",\"doi\":\"10.1144/qjegh2024-014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A stress-seepage-damage coupling model considering the long-term creep of deep rock mass was established to study the mechanism of evolution of stability of the surrounding rock during reconstruction and excavation of abandoned deep water-rich roadways in the mine. The research shows that the maximum compressive stress in the circular cavern is significantly lower than that in the horseshoe-shaped cavern. Stress is distributed more uniformly in the circular cavern, and appropriately enlarging the size of the reconstructed excavation site can improve the stability of the surrounding rock. As the creep duration for abandoned roadways increases from one to nine years, the growth rates for vault settlement and horizontal clearance convergence remain constant and the roadway undergoes steady-state creep. With the increasing burial depth of the abandoned roadway (200 ∼ 400 m), a pressure arch is gradually formed in the roadway roof in the reconstruction and mining process. The surrounding rock forms a 'self-bearing structure' with arch mechanical characteristics and load transfer mechanism to maintain its own stability, and the overall bearing capacity of the surrounding rock is greatly improved. However, once the burial depth exceeds 400 m, the effect of the pressure arch begins to diminish with further increases in burial depth. Furthermore, pore water pressure significantly weakens the surrounding rocks.\",\"PeriodicalId\":20937,\"journal\":{\"name\":\"Quarterly Journal of Engineering Geology and Hydrogeology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Engineering Geology and Hydrogeology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/qjegh2024-014\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Engineering Geology and Hydrogeology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/qjegh2024-014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

建立了考虑深部岩体长期蠕变的应力-渗流-破坏耦合模型,研究了矿山废弃深部富水巷道改造和开挖过程中围岩稳定性的演变机理。研究表明,圆形溶洞的最大压应力明显低于马蹄形溶洞。应力在圆形空洞中分布更均匀,适当扩大重建开挖场地的面积可以提高围岩的稳定性。当废弃巷道的蠕变持续时间从 1 年增加到 9 年时,拱顶沉降和水平间隙收敛的增长率保持不变,巷道经历稳态蠕变。随着废弃巷道埋深的增加(200 ∼ 400 米),巷道顶板在重建和开采过程中逐渐形成压力拱。围岩形成 "自承式结构",具有拱的力学特性和荷载传递机制,可保持自身稳定,围岩的整体承载能力大大提高。然而,一旦埋深超过 400 米,随着埋深的进一步增加,压力拱的作用开始减弱。此外,孔隙水压力也会大大削弱围岩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling effects of stress, seepage and damage during reconstruction and excavation of abandoned deep water-rich roadways
A stress-seepage-damage coupling model considering the long-term creep of deep rock mass was established to study the mechanism of evolution of stability of the surrounding rock during reconstruction and excavation of abandoned deep water-rich roadways in the mine. The research shows that the maximum compressive stress in the circular cavern is significantly lower than that in the horseshoe-shaped cavern. Stress is distributed more uniformly in the circular cavern, and appropriately enlarging the size of the reconstructed excavation site can improve the stability of the surrounding rock. As the creep duration for abandoned roadways increases from one to nine years, the growth rates for vault settlement and horizontal clearance convergence remain constant and the roadway undergoes steady-state creep. With the increasing burial depth of the abandoned roadway (200 ∼ 400 m), a pressure arch is gradually formed in the roadway roof in the reconstruction and mining process. The surrounding rock forms a 'self-bearing structure' with arch mechanical characteristics and load transfer mechanism to maintain its own stability, and the overall bearing capacity of the surrounding rock is greatly improved. However, once the burial depth exceeds 400 m, the effect of the pressure arch begins to diminish with further increases in burial depth. Furthermore, pore water pressure significantly weakens the surrounding rocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
14.30%
发文量
66
审稿时长
6 months
期刊介绍: Quarterly Journal of Engineering Geology and Hydrogeology is owned by the Geological Society of London and published by the Geological Society Publishing House. Quarterly Journal of Engineering Geology & Hydrogeology (QJEGH) is an established peer reviewed international journal featuring papers on geology as applied to civil engineering mining practice and water resources. Papers are invited from, and about, all areas of the world on engineering geology and hydrogeology topics. This includes but is not limited to: applied geophysics, engineering geomorphology, environmental geology, hydrogeology, groundwater quality, ground source heat, contaminated land, waste management, land use planning, geotechnics, rock mechanics, geomaterials and geological hazards. The journal publishes the prestigious Glossop and Ineson lectures, research papers, case studies, review articles, technical notes, photographic features, thematic sets, discussion papers, editorial opinion and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信