{"title":"碎砖对改性反应粉末混凝土某些性能的影响","authors":"Rosul Hussein Saeed, N. Aljalawi","doi":"10.4028/p-qiloc0","DOIUrl":null,"url":null,"abstract":"Abstract. Much trash, similar to clay bricks, concrete, and mortar, is made when things are built or torn down. A cheap and eco-friendly way to eliminate this trash is to recycle it into new building materials. Construction and removal waste is turned into recycled aggregates after being smashed, ground, dried, and graded. This paper shows the findings of a study that looked into using crushed bricks as aggregates. The bricks were taken from the demolition of different places and then crushed until they were no bigger than 10 mm. Micro steel fibres (1% by volume of the concrete) and crushed bricks (25% and 50%) of the original reactive powder concrete were added to the mix instead of fine sand and micro steel fibres before the casting. To look into several properties of the standard and reactive powder concrete, including their density, compressive strength , and Flexural strength . compressive strength of modified reactive powder concrete ( MRPC) with 25% crushed bricks increased by 7.22% and 6.73% more than compressive strength of the standard reactive powder concrete at age 7 days and 28 days of testing respectively and Flexural strength increasing by 33.96%and 27.6% more than Flexural strength of the standard reactive powder concrete at age 7 days and 28 days of testing respectively . The compressive strength slightly decreasing by 8.43% and 7.69% at age 7 days and 28 days of testing respectively when 50% crushed bricks were used instead sand and Flexural strength decreasing by 16.03% and 14.92% less than reference mixture when 50% crushed brick incorporated. Moreover, modified reactive powder concrete was less dense than the reactive powder concrete that was first made.","PeriodicalId":10603,"journal":{"name":"Construction Technologies and Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Crushed Brick on some Properties of Modified Reactive Powder Concrete\",\"authors\":\"Rosul Hussein Saeed, N. Aljalawi\",\"doi\":\"10.4028/p-qiloc0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Much trash, similar to clay bricks, concrete, and mortar, is made when things are built or torn down. A cheap and eco-friendly way to eliminate this trash is to recycle it into new building materials. Construction and removal waste is turned into recycled aggregates after being smashed, ground, dried, and graded. This paper shows the findings of a study that looked into using crushed bricks as aggregates. The bricks were taken from the demolition of different places and then crushed until they were no bigger than 10 mm. Micro steel fibres (1% by volume of the concrete) and crushed bricks (25% and 50%) of the original reactive powder concrete were added to the mix instead of fine sand and micro steel fibres before the casting. To look into several properties of the standard and reactive powder concrete, including their density, compressive strength , and Flexural strength . compressive strength of modified reactive powder concrete ( MRPC) with 25% crushed bricks increased by 7.22% and 6.73% more than compressive strength of the standard reactive powder concrete at age 7 days and 28 days of testing respectively and Flexural strength increasing by 33.96%and 27.6% more than Flexural strength of the standard reactive powder concrete at age 7 days and 28 days of testing respectively . The compressive strength slightly decreasing by 8.43% and 7.69% at age 7 days and 28 days of testing respectively when 50% crushed bricks were used instead sand and Flexural strength decreasing by 16.03% and 14.92% less than reference mixture when 50% crushed brick incorporated. Moreover, modified reactive powder concrete was less dense than the reactive powder concrete that was first made.\",\"PeriodicalId\":10603,\"journal\":{\"name\":\"Construction Technologies and Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction Technologies and Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-qiloc0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction Technologies and Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-qiloc0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Crushed Brick on some Properties of Modified Reactive Powder Concrete
Abstract. Much trash, similar to clay bricks, concrete, and mortar, is made when things are built or torn down. A cheap and eco-friendly way to eliminate this trash is to recycle it into new building materials. Construction and removal waste is turned into recycled aggregates after being smashed, ground, dried, and graded. This paper shows the findings of a study that looked into using crushed bricks as aggregates. The bricks were taken from the demolition of different places and then crushed until they were no bigger than 10 mm. Micro steel fibres (1% by volume of the concrete) and crushed bricks (25% and 50%) of the original reactive powder concrete were added to the mix instead of fine sand and micro steel fibres before the casting. To look into several properties of the standard and reactive powder concrete, including their density, compressive strength , and Flexural strength . compressive strength of modified reactive powder concrete ( MRPC) with 25% crushed bricks increased by 7.22% and 6.73% more than compressive strength of the standard reactive powder concrete at age 7 days and 28 days of testing respectively and Flexural strength increasing by 33.96%and 27.6% more than Flexural strength of the standard reactive powder concrete at age 7 days and 28 days of testing respectively . The compressive strength slightly decreasing by 8.43% and 7.69% at age 7 days and 28 days of testing respectively when 50% crushed bricks were used instead sand and Flexural strength decreasing by 16.03% and 14.92% less than reference mixture when 50% crushed brick incorporated. Moreover, modified reactive powder concrete was less dense than the reactive powder concrete that was first made.