将人工智能融入临床检验医学:进步与挑战

Heying Xie, Yin Jia, Shanrong Liu
{"title":"将人工智能融入临床检验医学:进步与挑战","authors":"Heying Xie,&nbsp;Yin Jia,&nbsp;Shanrong Liu","doi":"10.1002/INMD.20230056","DOIUrl":null,"url":null,"abstract":"<p>Artificial intelligence (AI)-driven analysis of comprehensive clinical parameters is bringing about a significant transformation in traditional routine clinical laboratory testing. This transformation impacts the prediction, prevention, diagnosis, and prognosis of human diseases. AI possesses the capability to efficiently analyze and process vast and intricate datasets, thereby facilitating the development of diverse and efficient diagnostic or predictive models. This advancement is fueling significant improvements in laboratory quality, automation, and the accuracy of diagnoses. In this context, we conducted a thorough review and discussion on the progression of AI applications in clinical laboratory medicine, encompassing advancements, implementation, and challenges. Our conclusion underscores that integrating AI into clinical laboratory testing will notably propel personalized precision medicine forward and enhance diagnostic accuracy, especially benefiting patients for whom accurate diagnoses are elusive through traditional laboratory testing systems.</p>","PeriodicalId":100686,"journal":{"name":"Interdisciplinary Medicine","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/INMD.20230056","citationCount":"0","resultStr":"{\"title\":\"Integration of artificial intelligence in clinical laboratory medicine: Advancements and challenges\",\"authors\":\"Heying Xie,&nbsp;Yin Jia,&nbsp;Shanrong Liu\",\"doi\":\"10.1002/INMD.20230056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Artificial intelligence (AI)-driven analysis of comprehensive clinical parameters is bringing about a significant transformation in traditional routine clinical laboratory testing. This transformation impacts the prediction, prevention, diagnosis, and prognosis of human diseases. AI possesses the capability to efficiently analyze and process vast and intricate datasets, thereby facilitating the development of diverse and efficient diagnostic or predictive models. This advancement is fueling significant improvements in laboratory quality, automation, and the accuracy of diagnoses. In this context, we conducted a thorough review and discussion on the progression of AI applications in clinical laboratory medicine, encompassing advancements, implementation, and challenges. Our conclusion underscores that integrating AI into clinical laboratory testing will notably propel personalized precision medicine forward and enhance diagnostic accuracy, especially benefiting patients for whom accurate diagnoses are elusive through traditional laboratory testing systems.</p>\",\"PeriodicalId\":100686,\"journal\":{\"name\":\"Interdisciplinary Medicine\",\"volume\":\"2 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/INMD.20230056\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/INMD.20230056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Medicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/INMD.20230056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)驱动的综合临床参数分析正在给传统的常规临床实验室检测带来重大变革。这种变革影响着人类疾病的预测、预防、诊断和预后。人工智能具有高效分析和处理庞大而复杂的数据集的能力,从而促进了多样化和高效诊断或预测模型的开发。这一进步推动了实验室质量、自动化和诊断准确性的显著提高。在此背景下,我们对人工智能在临床检验医学中的应用进展进行了全面的回顾和讨论,包括进展、实施和挑战。我们的结论强调,将人工智能融入临床实验室检验将显著推动个性化精准医疗的发展,并提高诊断的准确性,特别是使那些通过传统实验室检验系统无法获得准确诊断的患者受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integration of artificial intelligence in clinical laboratory medicine: Advancements and challenges

Integration of artificial intelligence in clinical laboratory medicine: Advancements and challenges

Artificial intelligence (AI)-driven analysis of comprehensive clinical parameters is bringing about a significant transformation in traditional routine clinical laboratory testing. This transformation impacts the prediction, prevention, diagnosis, and prognosis of human diseases. AI possesses the capability to efficiently analyze and process vast and intricate datasets, thereby facilitating the development of diverse and efficient diagnostic or predictive models. This advancement is fueling significant improvements in laboratory quality, automation, and the accuracy of diagnoses. In this context, we conducted a thorough review and discussion on the progression of AI applications in clinical laboratory medicine, encompassing advancements, implementation, and challenges. Our conclusion underscores that integrating AI into clinical laboratory testing will notably propel personalized precision medicine forward and enhance diagnostic accuracy, especially benefiting patients for whom accurate diagnoses are elusive through traditional laboratory testing systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信