从公共数据中学习个性化隐私偏好

IF 5 3区 管理学 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE
Wen Wang, Beibei Li
{"title":"从公共数据中学习个性化隐私偏好","authors":"Wen Wang, Beibei Li","doi":"10.1287/isre.2023.0318","DOIUrl":null,"url":null,"abstract":"In the era of digital transformation, understanding personalized privacy preferences is essential for firms and policymakers to build trust and ensure compliance. Traditional methods rely on private data and explicit user input, which can be invasive and impractical. This paper introduces a novel framework that leverages public data, specifically social media posts, to predict individual privacy preferences. By employing deep learning and natural language processing, the framework extracts psychosocial traits such as lifestyle, risk preferences, and emotional states from public data, offering a nonintrusive and scalable approach. Findings reveal that psychosocial traits derived from social media provide greater predictive power than traditional private data. This model aids businesses and policymakers by offering a deeper understanding of user privacy concerns, enabling the development of effective privacy policies and practices. This innovative approach not only enhances consumer privacy control and trust but also optimizes data management for platforms and informs better regulatory decisions, showcasing the practical implications of utilizing public data for privacy preference prediction.","PeriodicalId":48411,"journal":{"name":"Information Systems Research","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Personalized Privacy Preference from Public Data\",\"authors\":\"Wen Wang, Beibei Li\",\"doi\":\"10.1287/isre.2023.0318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the era of digital transformation, understanding personalized privacy preferences is essential for firms and policymakers to build trust and ensure compliance. Traditional methods rely on private data and explicit user input, which can be invasive and impractical. This paper introduces a novel framework that leverages public data, specifically social media posts, to predict individual privacy preferences. By employing deep learning and natural language processing, the framework extracts psychosocial traits such as lifestyle, risk preferences, and emotional states from public data, offering a nonintrusive and scalable approach. Findings reveal that psychosocial traits derived from social media provide greater predictive power than traditional private data. This model aids businesses and policymakers by offering a deeper understanding of user privacy concerns, enabling the development of effective privacy policies and practices. This innovative approach not only enhances consumer privacy control and trust but also optimizes data management for platforms and informs better regulatory decisions, showcasing the practical implications of utilizing public data for privacy preference prediction.\",\"PeriodicalId\":48411,\"journal\":{\"name\":\"Information Systems Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/isre.2023.0318\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/isre.2023.0318","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在数字化转型时代,了解个性化的隐私偏好对于企业和政策制定者建立信任和确保合规至关重要。传统方法依赖于私人数据和明确的用户输入,这可能具有侵犯性且不切实际。本文介绍了一种利用公共数据(特别是社交媒体帖子)预测个人隐私偏好的新型框架。通过采用深度学习和自然语言处理,该框架从公共数据中提取了生活方式、风险偏好和情绪状态等社会心理特征,提供了一种非侵入性和可扩展的方法。研究结果表明,与传统的私人数据相比,从社交媒体中提取的社会心理特征具有更强的预测能力。这一模型有助于企业和政策制定者更深入地了解用户的隐私问题,从而制定有效的隐私政策和措施。这一创新方法不仅增强了消费者的隐私控制和信任,还优化了平台的数据管理,为更好的监管决策提供了信息,展示了利用公共数据进行隐私偏好预测的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Personalized Privacy Preference from Public Data
In the era of digital transformation, understanding personalized privacy preferences is essential for firms and policymakers to build trust and ensure compliance. Traditional methods rely on private data and explicit user input, which can be invasive and impractical. This paper introduces a novel framework that leverages public data, specifically social media posts, to predict individual privacy preferences. By employing deep learning and natural language processing, the framework extracts psychosocial traits such as lifestyle, risk preferences, and emotional states from public data, offering a nonintrusive and scalable approach. Findings reveal that psychosocial traits derived from social media provide greater predictive power than traditional private data. This model aids businesses and policymakers by offering a deeper understanding of user privacy concerns, enabling the development of effective privacy policies and practices. This innovative approach not only enhances consumer privacy control and trust but also optimizes data management for platforms and informs better regulatory decisions, showcasing the practical implications of utilizing public data for privacy preference prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
8.20%
发文量
120
期刊介绍: ISR (Information Systems Research) is a journal of INFORMS, the Institute for Operations Research and the Management Sciences. Information Systems Research is a leading international journal of theory, research, and intellectual development, focused on information systems in organizations, institutions, the economy, and society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信