Namazu:用于通用信号下振动实验的低成本可调振动台

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL
J. Grashorn, M. Bittner, M. Banse, X. Chang, M. Beer, A. Fau
{"title":"Namazu:用于通用信号下振动实验的低成本可调振动台","authors":"J. Grashorn,&nbsp;M. Bittner,&nbsp;M. Banse,&nbsp;X. Chang,&nbsp;M. Beer,&nbsp;A. Fau","doi":"10.1007/s40799-024-00727-8","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents Namazu, a low-cost tunable shaking table framework for uniaxial vibration experiments in engineering education and research. All components and corresponding assembly are detailed. The design is easy to use and requires minimum maintenance. Open-source software covering signal generation and microcontroller programming is proposed to prescribe the motion of the table. There is no restriction in the programming language used to interface with the table. Communication with the microcontroller is performed via a serial interface, which eliminates the need for additional software. Besides, any displacement signals, including random ones, can be chosen. Due to the open-source nature of the Namazu table, users can also implement custom methods for signal generation and modify the table hardware. Suggestions are given in the paper. Accuracy is analyzed through displacement measurements. In addition, the Shinozuka benchmark is proposed and applied to test the table accuracy in the frequency domain. The results show good consistency of the signals obtained with the setpoints. Thus, Namazu, including the shaking table and a software suite, offers a versatile, accessible, and accurate solution for vibration experiments.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"49 1","pages":"97 - 115"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40799-024-00727-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Namazu: Low-Cost Tunable Shaking Table for Vibration Experiments Under Generic Signals\",\"authors\":\"J. Grashorn,&nbsp;M. Bittner,&nbsp;M. Banse,&nbsp;X. Chang,&nbsp;M. Beer,&nbsp;A. Fau\",\"doi\":\"10.1007/s40799-024-00727-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article presents Namazu, a low-cost tunable shaking table framework for uniaxial vibration experiments in engineering education and research. All components and corresponding assembly are detailed. The design is easy to use and requires minimum maintenance. Open-source software covering signal generation and microcontroller programming is proposed to prescribe the motion of the table. There is no restriction in the programming language used to interface with the table. Communication with the microcontroller is performed via a serial interface, which eliminates the need for additional software. Besides, any displacement signals, including random ones, can be chosen. Due to the open-source nature of the Namazu table, users can also implement custom methods for signal generation and modify the table hardware. Suggestions are given in the paper. Accuracy is analyzed through displacement measurements. In addition, the Shinozuka benchmark is proposed and applied to test the table accuracy in the frequency domain. The results show good consistency of the signals obtained with the setpoints. Thus, Namazu, including the shaking table and a software suite, offers a versatile, accessible, and accurate solution for vibration experiments.</p></div>\",\"PeriodicalId\":553,\"journal\":{\"name\":\"Experimental Techniques\",\"volume\":\"49 1\",\"pages\":\"97 - 115\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40799-024-00727-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40799-024-00727-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-024-00727-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Namazu: Low-Cost Tunable Shaking Table for Vibration Experiments Under Generic Signals

Namazu: Low-Cost Tunable Shaking Table for Vibration Experiments Under Generic Signals

This article presents Namazu, a low-cost tunable shaking table framework for uniaxial vibration experiments in engineering education and research. All components and corresponding assembly are detailed. The design is easy to use and requires minimum maintenance. Open-source software covering signal generation and microcontroller programming is proposed to prescribe the motion of the table. There is no restriction in the programming language used to interface with the table. Communication with the microcontroller is performed via a serial interface, which eliminates the need for additional software. Besides, any displacement signals, including random ones, can be chosen. Due to the open-source nature of the Namazu table, users can also implement custom methods for signal generation and modify the table hardware. Suggestions are given in the paper. Accuracy is analyzed through displacement measurements. In addition, the Shinozuka benchmark is proposed and applied to test the table accuracy in the frequency domain. The results show good consistency of the signals obtained with the setpoints. Thus, Namazu, including the shaking table and a software suite, offers a versatile, accessible, and accurate solution for vibration experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Techniques
Experimental Techniques 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
88
审稿时长
5.2 months
期刊介绍: Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques. The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to: - Increase the knowledge of physical phenomena - Further the understanding of the behavior of materials, structures, and systems - Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信