由支柱烯构建的簇发光超分子聚合物网络及其在信息加密中的应用

IF 13.9 Q1 CHEMISTRY, MULTIDISCIPLINARY
Meiru Zhang, Yujie Cheng, Ting Zhang, Bicong Liang, Xuehong Wei, Pi Wang, Danyu Xia, Xuzhou Yan
{"title":"由支柱烯构建的簇发光超分子聚合物网络及其在信息加密中的应用","authors":"Meiru Zhang,&nbsp;Yujie Cheng,&nbsp;Ting Zhang,&nbsp;Bicong Liang,&nbsp;Xuehong Wei,&nbsp;Pi Wang,&nbsp;Danyu Xia,&nbsp;Xuzhou Yan","doi":"10.1002/agt2.608","DOIUrl":null,"url":null,"abstract":"<p>Clusterization-triggered emissive (CTE) materials have attracted great attention in recent years. The regulation of the emission property of materials with CTE property through supramolecular interactions is an excellent strategy for the construction of smart fluorescent materials. In this work, we have prepared a regulatable supramolecular polymer network with CTE properties through pillararene-based host−guest interactions. The pillar[5]arene-grafted poly(methyl methacrylate) (PMMA) showed a classic CTE character. After adding Brooker's merocyanine-grafted polymer to the solution of the pillar[5]arene-containing PMMA, the supramolecular polymer network gel formed by the host−guest interactions between pillararene and Brooker's merocyanine guest. This supramolecular network showed brighter fluorescence than the pillar[5]arene-grafted PMMA in the solid state. In addition, the fluorescence emission of the supramolecular network can be further regulated by pH conditions. After adding an acid, the Brooker's merocyanine-containing guest polymer was protonated, and the supramolecular network changed to a protonated network through host−guest interactions between protonated Brooker's merocyanine guest and pillararene. Interestingly, the fluorescence was quenched when the supramolecular network turned into the protonated network. After adding a base, the protonated network can convert back to the original network, along with recovery of the fluorescence. Therefore, the regulation of the fluorescence of the supramolecular polymer materials with CTE was successfully realized by pillararene-based host−guest interactions. Furthermore, this tailorable fluorescent supramolecular polymer network system was applied as an information encryption material.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":null,"pages":null},"PeriodicalIF":13.9000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.608","citationCount":"0","resultStr":"{\"title\":\"A clusteroluminescent supramolecular polymer network constructed by pillararene and its application in information encryption\",\"authors\":\"Meiru Zhang,&nbsp;Yujie Cheng,&nbsp;Ting Zhang,&nbsp;Bicong Liang,&nbsp;Xuehong Wei,&nbsp;Pi Wang,&nbsp;Danyu Xia,&nbsp;Xuzhou Yan\",\"doi\":\"10.1002/agt2.608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Clusterization-triggered emissive (CTE) materials have attracted great attention in recent years. The regulation of the emission property of materials with CTE property through supramolecular interactions is an excellent strategy for the construction of smart fluorescent materials. In this work, we have prepared a regulatable supramolecular polymer network with CTE properties through pillararene-based host−guest interactions. The pillar[5]arene-grafted poly(methyl methacrylate) (PMMA) showed a classic CTE character. After adding Brooker's merocyanine-grafted polymer to the solution of the pillar[5]arene-containing PMMA, the supramolecular polymer network gel formed by the host−guest interactions between pillararene and Brooker's merocyanine guest. This supramolecular network showed brighter fluorescence than the pillar[5]arene-grafted PMMA in the solid state. In addition, the fluorescence emission of the supramolecular network can be further regulated by pH conditions. After adding an acid, the Brooker's merocyanine-containing guest polymer was protonated, and the supramolecular network changed to a protonated network through host−guest interactions between protonated Brooker's merocyanine guest and pillararene. Interestingly, the fluorescence was quenched when the supramolecular network turned into the protonated network. After adding a base, the protonated network can convert back to the original network, along with recovery of the fluorescence. Therefore, the regulation of the fluorescence of the supramolecular polymer materials with CTE was successfully realized by pillararene-based host−guest interactions. Furthermore, this tailorable fluorescent supramolecular polymer network system was applied as an information encryption material.</p>\",\"PeriodicalId\":72127,\"journal\":{\"name\":\"Aggregate (Hoboken, N.J.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.608\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aggregate (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agt2.608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,团簇化触发发射(CTE)材料备受关注。通过超分子相互作用调控具有 CTE 特性的材料的发射特性,是构建智能荧光材料的绝佳策略。在这项工作中,我们通过基于支柱烯的主客体相互作用制备了一种具有 CTE 特性的可调控超分子聚合物网络。柱[5]炔接枝的聚甲基丙烯酸甲酯(PMMA)具有典型的 CTE 特性。在含支柱[5]炔的聚甲基丙烯酸甲酯溶液中加入布鲁克梅洛菁接枝聚合物后,支柱炔与布鲁克梅洛菁客体之间的主客作用形成了超分子聚合物网络凝胶。这种超分子网络在固态下比支柱[5]炔接枝的 PMMA 显示出更亮的荧光。此外,超分子网络的荧光发射还可以通过 pH 值条件进一步调节。加入酸后,含有布鲁克梅洛菁的客体聚合物被质子化,通过质子化的布鲁克梅洛菁客体与支柱烯之间的主客体相互作用,超分子网络变为质子化网络。有趣的是,当超分子网络变成质子化网络时,荧光被淬灭。加入碱后,质子化网络又能转换回原始网络,荧光也随之恢复。因此,基于柱烯的主客体相互作用成功实现了对具有 CTE 的超分子聚合物材料的荧光调节。此外,这种可定制的荧光超分子聚合物网络系统还被用作信息加密材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A clusteroluminescent supramolecular polymer network constructed by pillararene and its application in information encryption

A clusteroluminescent supramolecular polymer network constructed by pillararene and its application in information encryption

A clusteroluminescent supramolecular polymer network constructed by pillararene and its application in information encryption

Clusterization-triggered emissive (CTE) materials have attracted great attention in recent years. The regulation of the emission property of materials with CTE property through supramolecular interactions is an excellent strategy for the construction of smart fluorescent materials. In this work, we have prepared a regulatable supramolecular polymer network with CTE properties through pillararene-based host−guest interactions. The pillar[5]arene-grafted poly(methyl methacrylate) (PMMA) showed a classic CTE character. After adding Brooker's merocyanine-grafted polymer to the solution of the pillar[5]arene-containing PMMA, the supramolecular polymer network gel formed by the host−guest interactions between pillararene and Brooker's merocyanine guest. This supramolecular network showed brighter fluorescence than the pillar[5]arene-grafted PMMA in the solid state. In addition, the fluorescence emission of the supramolecular network can be further regulated by pH conditions. After adding an acid, the Brooker's merocyanine-containing guest polymer was protonated, and the supramolecular network changed to a protonated network through host−guest interactions between protonated Brooker's merocyanine guest and pillararene. Interestingly, the fluorescence was quenched when the supramolecular network turned into the protonated network. After adding a base, the protonated network can convert back to the original network, along with recovery of the fluorescence. Therefore, the regulation of the fluorescence of the supramolecular polymer materials with CTE was successfully realized by pillararene-based host−guest interactions. Furthermore, this tailorable fluorescent supramolecular polymer network system was applied as an information encryption material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信