Nicostrato Perez, Vartika Singh, Claudia Ringler, Hua Xie, Tingju Zhu, Edwin H. Sutanudjaja, Karen G. Villholth
{"title":"在不影响粮食安全的情况下终止地下水超采","authors":"Nicostrato Perez, Vartika Singh, Claudia Ringler, Hua Xie, Tingju Zhu, Edwin H. Sutanudjaja, Karen G. Villholth","doi":"10.1038/s41893-024-01376-w","DOIUrl":null,"url":null,"abstract":"Groundwater development is key to accelerating agricultural growth and to achieving food security in a climate crisis. However, the rapid increase in groundwater exploitation over the past four decades has resulted in depletion and degradation, particularly in regions already facing acute water scarcity, with potential irreversible impacts for food security and economic prosperity. Using a climate–water–food systems modelling framework, we develop exploratory scenarios and find that halting groundwater depletion without complementary policy actions would adversely affect food production and trade, increase food prices and grow the number of people at risk of hunger by 26 million by 2050. Supportive policy interventions in food and water systems such as increasing the effective use of precipitation and investments in agricultural research and development could mitigate most negative effects of sustainable groundwater use on food security. In addition, changing preferences of high-income countries towards less-meat-based diets would marginally alleviate pressures on food price. To safeguard the ability of groundwater systems to realize water and food security objectives amidst climate challenges, comprehensive measures encompassing improved water management practices, advancements in seed technologies and appropriate institutions will be needed. Reducing groundwater extraction to sustainable levels may have detrimental impacts on global food security. Improving rainfed water use efficiency and investments in agricultural research and development can ensure sustainable groundwater resources and food security into the future.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"7 8","pages":"1007-1017"},"PeriodicalIF":25.7000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41893-024-01376-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Ending groundwater overdraft without affecting food security\",\"authors\":\"Nicostrato Perez, Vartika Singh, Claudia Ringler, Hua Xie, Tingju Zhu, Edwin H. Sutanudjaja, Karen G. Villholth\",\"doi\":\"10.1038/s41893-024-01376-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Groundwater development is key to accelerating agricultural growth and to achieving food security in a climate crisis. However, the rapid increase in groundwater exploitation over the past four decades has resulted in depletion and degradation, particularly in regions already facing acute water scarcity, with potential irreversible impacts for food security and economic prosperity. Using a climate–water–food systems modelling framework, we develop exploratory scenarios and find that halting groundwater depletion without complementary policy actions would adversely affect food production and trade, increase food prices and grow the number of people at risk of hunger by 26 million by 2050. Supportive policy interventions in food and water systems such as increasing the effective use of precipitation and investments in agricultural research and development could mitigate most negative effects of sustainable groundwater use on food security. In addition, changing preferences of high-income countries towards less-meat-based diets would marginally alleviate pressures on food price. To safeguard the ability of groundwater systems to realize water and food security objectives amidst climate challenges, comprehensive measures encompassing improved water management practices, advancements in seed technologies and appropriate institutions will be needed. Reducing groundwater extraction to sustainable levels may have detrimental impacts on global food security. Improving rainfed water use efficiency and investments in agricultural research and development can ensure sustainable groundwater resources and food security into the future.\",\"PeriodicalId\":19056,\"journal\":{\"name\":\"Nature Sustainability\",\"volume\":\"7 8\",\"pages\":\"1007-1017\"},\"PeriodicalIF\":25.7000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41893-024-01376-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s41893-024-01376-w\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01376-w","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Ending groundwater overdraft without affecting food security
Groundwater development is key to accelerating agricultural growth and to achieving food security in a climate crisis. However, the rapid increase in groundwater exploitation over the past four decades has resulted in depletion and degradation, particularly in regions already facing acute water scarcity, with potential irreversible impacts for food security and economic prosperity. Using a climate–water–food systems modelling framework, we develop exploratory scenarios and find that halting groundwater depletion without complementary policy actions would adversely affect food production and trade, increase food prices and grow the number of people at risk of hunger by 26 million by 2050. Supportive policy interventions in food and water systems such as increasing the effective use of precipitation and investments in agricultural research and development could mitigate most negative effects of sustainable groundwater use on food security. In addition, changing preferences of high-income countries towards less-meat-based diets would marginally alleviate pressures on food price. To safeguard the ability of groundwater systems to realize water and food security objectives amidst climate challenges, comprehensive measures encompassing improved water management practices, advancements in seed technologies and appropriate institutions will be needed. Reducing groundwater extraction to sustainable levels may have detrimental impacts on global food security. Improving rainfed water use efficiency and investments in agricultural research and development can ensure sustainable groundwater resources and food security into the future.
期刊介绍:
Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions.
Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.