{"title":"常压等离子体下水溶液表面附近活性物种的深度分辨电位计检测","authors":"Kai Kubota, Yuko Yokoyama, Naoya Nishi, T. Sakka","doi":"10.1093/chemle/upae122","DOIUrl":null,"url":null,"abstract":"\n Near the plasma/water interface highly active species such as ·OH are formed, providing unique reaction fields. To develop interfacial reaction systems that utilize them, it is important to conduct in-situ quantitative analysis for their supply and consumption kinetics. In this study, depth- and time-resolved in-situ potentiometric measurements were performed to detect redox-active species, such as OH radicals. A Pt electrode employed as an indicator electrode showed a large potential shift to 1.5 V vs SHE only when the depth is less than 10 µm, suggesting the presence of ·OH.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"5 4","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Depth-resolved potentiometric detection of active species near the surface of an aqueous solution under atmospheric pressure plasma\",\"authors\":\"Kai Kubota, Yuko Yokoyama, Naoya Nishi, T. Sakka\",\"doi\":\"10.1093/chemle/upae122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Near the plasma/water interface highly active species such as ·OH are formed, providing unique reaction fields. To develop interfacial reaction systems that utilize them, it is important to conduct in-situ quantitative analysis for their supply and consumption kinetics. In this study, depth- and time-resolved in-situ potentiometric measurements were performed to detect redox-active species, such as OH radicals. A Pt electrode employed as an indicator electrode showed a large potential shift to 1.5 V vs SHE only when the depth is less than 10 µm, suggesting the presence of ·OH.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"5 4\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1093/chemle/upae122\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chemle/upae122","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在等离子体/水界面附近会形成高活性物质(如 -OH),从而提供独特的反应场。要开发利用这些物质的界面反应系统,就必须对其供应和消耗动力学进行原位定量分析。本研究采用深度和时间分辨原位电位测量法来检测氧化还原活性物种,如 OH 自由基。作为指示电极的铂电极只有在深度小于 10 µm 时才会出现较大的电位偏移,达到 1.5 V vs SHE,这表明存在-OH。
Depth-resolved potentiometric detection of active species near the surface of an aqueous solution under atmospheric pressure plasma
Near the plasma/water interface highly active species such as ·OH are formed, providing unique reaction fields. To develop interfacial reaction systems that utilize them, it is important to conduct in-situ quantitative analysis for their supply and consumption kinetics. In this study, depth- and time-resolved in-situ potentiometric measurements were performed to detect redox-active species, such as OH radicals. A Pt electrode employed as an indicator electrode showed a large potential shift to 1.5 V vs SHE only when the depth is less than 10 µm, suggesting the presence of ·OH.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.