轻松制备具有重塑能力和增强防水性的淀粉基紫外线阻隔薄膜

IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kazuki Shibasaki, Yu-I Hsu, Hiroshi Uyama
{"title":"轻松制备具有重塑能力和增强防水性的淀粉基紫外线阻隔薄膜","authors":"Kazuki Shibasaki,&nbsp;Yu-I Hsu,&nbsp;Hiroshi Uyama","doi":"10.1002/mame.202400137","DOIUrl":null,"url":null,"abstract":"<p>Petroleum-derived plastics are harmful to ecosystems because they are not decomposed in the natural environment. Therefore, the replacement of petroleum-derived plastics with biodegradable plastics has attracted considerable attention. UV-barrier films in the agricultural and packaging fields are mainly composed of petroleum-derived plastics, which have a negative impact on the ecosystem when they leak into the environment. Thermoplastic starch (TPS) is an inexpensive and sustainable biodegradable plastic that has recently attracted considerable attention. In this study, the addition of UV barrier properties and remolding ability to TPS for replacing petroleum-derived UV barrier films are investigated. Also, a biodegradable polyester coating is studied to improve the water resistance of the prepared UV-barrier TPS (U-TPS). To prepare U-TPS, a conjugated enamine structure is formed by reacting starch acetoacetate with diamine monomers during melt kneading. U-TPS exhibits high UV barrier properties across the UV regions (200–400 nm) owing to the presence of acetoacetyl groups and enamines. These results indicate the possibility of increasing the utilization of TPS in agriculture and as a packaging material.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 10","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400137","citationCount":"0","resultStr":"{\"title\":\"Facile Fabrication of Starch-Based UV Barrier Films with Remolding Ability and Reinforcement for Water Resistance\",\"authors\":\"Kazuki Shibasaki,&nbsp;Yu-I Hsu,&nbsp;Hiroshi Uyama\",\"doi\":\"10.1002/mame.202400137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Petroleum-derived plastics are harmful to ecosystems because they are not decomposed in the natural environment. Therefore, the replacement of petroleum-derived plastics with biodegradable plastics has attracted considerable attention. UV-barrier films in the agricultural and packaging fields are mainly composed of petroleum-derived plastics, which have a negative impact on the ecosystem when they leak into the environment. Thermoplastic starch (TPS) is an inexpensive and sustainable biodegradable plastic that has recently attracted considerable attention. In this study, the addition of UV barrier properties and remolding ability to TPS for replacing petroleum-derived UV barrier films are investigated. Also, a biodegradable polyester coating is studied to improve the water resistance of the prepared UV-barrier TPS (U-TPS). To prepare U-TPS, a conjugated enamine structure is formed by reacting starch acetoacetate with diamine monomers during melt kneading. U-TPS exhibits high UV barrier properties across the UV regions (200–400 nm) owing to the presence of acetoacetyl groups and enamines. These results indicate the possibility of increasing the utilization of TPS in agriculture and as a packaging material.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"309 10\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400137\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400137\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400137","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

石油衍生塑料在自然环境中无法分解,因此对生态系统有害。因此,用生物降解塑料替代石油衍生塑料已引起广泛关注。农业和包装领域的紫外线阻隔膜主要由石油衍生塑料组成,这些塑料一旦泄漏到环境中,就会对生态系统产生负面影响。热塑性淀粉(TPS)是一种价格低廉且可持续的生物降解塑料,最近引起了广泛关注。在这项研究中,研究了如何在热塑性淀粉中添加紫外线阻隔性能和重塑能力,以取代源自石油的紫外线阻隔膜。此外,还研究了一种可生物降解的聚酯涂层,以提高所制备的紫外线阻隔 TPS(U-TPS)的耐水性。在制备 U-TPS 时,淀粉乙酰乙酸酯与二胺单体在熔融捏合过程中发生反应,形成共轭烯胺结构。由于乙酰乙酰基团和烯胺的存在,U-TPS 在紫外线区域(200-400 纳米)具有很高的紫外线阻隔性能。这些结果表明,有可能提高 TPS 在农业和包装材料中的利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facile Fabrication of Starch-Based UV Barrier Films with Remolding Ability and Reinforcement for Water Resistance

Petroleum-derived plastics are harmful to ecosystems because they are not decomposed in the natural environment. Therefore, the replacement of petroleum-derived plastics with biodegradable plastics has attracted considerable attention. UV-barrier films in the agricultural and packaging fields are mainly composed of petroleum-derived plastics, which have a negative impact on the ecosystem when they leak into the environment. Thermoplastic starch (TPS) is an inexpensive and sustainable biodegradable plastic that has recently attracted considerable attention. In this study, the addition of UV barrier properties and remolding ability to TPS for replacing petroleum-derived UV barrier films are investigated. Also, a biodegradable polyester coating is studied to improve the water resistance of the prepared UV-barrier TPS (U-TPS). To prepare U-TPS, a conjugated enamine structure is formed by reacting starch acetoacetate with diamine monomers during melt kneading. U-TPS exhibits high UV barrier properties across the UV regions (200–400 nm) owing to the presence of acetoacetyl groups and enamines. These results indicate the possibility of increasing the utilization of TPS in agriculture and as a packaging material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信