用于几种常见三维形状塑料材料降解分析的表面侵蚀方程

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Kirk W. Dotson, Kyle Pisano, D. Abigail Renegar
{"title":"用于几种常见三维形状塑料材料降解分析的表面侵蚀方程","authors":"Kirk W. Dotson,&nbsp;Kyle Pisano,&nbsp;D. Abigail Renegar","doi":"10.1007/s10924-024-03291-9","DOIUrl":null,"url":null,"abstract":"<div><p>Equations were derived for the biodegradative erosion of the surfaces of arbitrarily-sized circular and square objects, i.e., the decrease in volume caused by the catalytic activity of enzymes secreted by microorganisms attached to the object surfaces. Surface erosion is the primary mode of biodegradation for polyhydroxyalkanoate (PHA) objects resting on the ocean floor. Although the derivations were motivated by a need to assess the time-varying biodegradation and ultimate disintegration of PHA tubes and straws in the benthic environment, generality was maintained during the mathematical development such that the resulting equations are also applicable to other circular and square objects, including cylindrical rings, discs, and solid rods, and square plates, cubes, and prisms. Moreover, the equations are applicable to abiotic degradation via physical erosion, not just to biotic degradation caused by microbes. Surface erosion is expressed in terms of the ratio of the instantaneous mass to the initial mass, which is generally nonlinear with respect to time. The value of this ratio and the relative dimensions of the object establish a surface erosion function and its evolution over the lifetime of the object. Hence, the rate of degradation is not constant in the theory, but rather is prescribed by the irregular mass loss and the original geometry of the 3D object.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10924-024-03291-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Surface Erosion Equations for Degradation Analysis of Several Common Three-Dimensional Shapes of Plastic Materials\",\"authors\":\"Kirk W. Dotson,&nbsp;Kyle Pisano,&nbsp;D. Abigail Renegar\",\"doi\":\"10.1007/s10924-024-03291-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Equations were derived for the biodegradative erosion of the surfaces of arbitrarily-sized circular and square objects, i.e., the decrease in volume caused by the catalytic activity of enzymes secreted by microorganisms attached to the object surfaces. Surface erosion is the primary mode of biodegradation for polyhydroxyalkanoate (PHA) objects resting on the ocean floor. Although the derivations were motivated by a need to assess the time-varying biodegradation and ultimate disintegration of PHA tubes and straws in the benthic environment, generality was maintained during the mathematical development such that the resulting equations are also applicable to other circular and square objects, including cylindrical rings, discs, and solid rods, and square plates, cubes, and prisms. Moreover, the equations are applicable to abiotic degradation via physical erosion, not just to biotic degradation caused by microbes. Surface erosion is expressed in terms of the ratio of the instantaneous mass to the initial mass, which is generally nonlinear with respect to time. The value of this ratio and the relative dimensions of the object establish a surface erosion function and its evolution over the lifetime of the object. Hence, the rate of degradation is not constant in the theory, but rather is prescribed by the irregular mass loss and the original geometry of the 3D object.</p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10924-024-03291-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-024-03291-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03291-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

推导出了任意大小的圆形和方形物体表面的生物降解侵蚀方程,即物体表面附着的微生物分泌的酶的催化活性引起的体积减少。表面侵蚀是停留在海底的聚羟基烷酸(PHA)物体的主要生物降解模式。虽然推导的动机是为了评估 PHA 管和吸管在海底环境中随时间变化的生物降解和最终解体情况,但在数学发展过程中保持了通用性,因此得出的方程也适用于其他圆形和方形物体,包括圆柱环、圆盘和实心棒,以及方形板、立方体和棱柱。此外,这些方程还适用于通过物理侵蚀引起的非生物降解,而不仅仅是微生物引起的生物降解。表面侵蚀用瞬时质量与初始质量之比来表示,通常与时间呈非线性关系。该比率的值和物体的相对尺寸确定了表面侵蚀函数及其在物体寿命期间的演变。因此,退化率在理论上并不是恒定的,而是由三维物体的不规则质量损失和原始几何形状决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface Erosion Equations for Degradation Analysis of Several Common Three-Dimensional Shapes of Plastic Materials

Surface Erosion Equations for Degradation Analysis of Several Common Three-Dimensional Shapes of Plastic Materials

Equations were derived for the biodegradative erosion of the surfaces of arbitrarily-sized circular and square objects, i.e., the decrease in volume caused by the catalytic activity of enzymes secreted by microorganisms attached to the object surfaces. Surface erosion is the primary mode of biodegradation for polyhydroxyalkanoate (PHA) objects resting on the ocean floor. Although the derivations were motivated by a need to assess the time-varying biodegradation and ultimate disintegration of PHA tubes and straws in the benthic environment, generality was maintained during the mathematical development such that the resulting equations are also applicable to other circular and square objects, including cylindrical rings, discs, and solid rods, and square plates, cubes, and prisms. Moreover, the equations are applicable to abiotic degradation via physical erosion, not just to biotic degradation caused by microbes. Surface erosion is expressed in terms of the ratio of the instantaneous mass to the initial mass, which is generally nonlinear with respect to time. The value of this ratio and the relative dimensions of the object establish a surface erosion function and its evolution over the lifetime of the object. Hence, the rate of degradation is not constant in the theory, but rather is prescribed by the irregular mass loss and the original geometry of the 3D object.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信