E 单元和 F 逆单元,以及 Cayley 群图上的闭包算子

IF 0.6 3区 数学 Q3 MATHEMATICS
N. Szakács
{"title":"E 单元和 F 逆单元,以及 Cayley 群图上的闭包算子","authors":"N. Szakács","doi":"10.1007/s10474-024-01443-w","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the category of <i>X</i>-generated <i>E</i>-unitary inverse monoids with greatest group image <i>G</i> is equivalent to the category of <i>G</i>-invariant, finitary closure operators on the set of connected subgraphs of the Cayley graph of <i>G</i>. Analogously, we study <i>F</i>-inverse monoids in the extended signature <span>\\((\\cdot, 1, ^{-1}, ^\\mathfrak m)\\)</span>, and show that the category of <i>X</i>-generated <i>F</i>-inverse monoids with greatest group image <i>G</i> is equivalent to the category of <i>G</i>-invariant, finitary closure operators on the set of all subgraphs of the Cayley graph of <i>G</i>. As an application, we show that presentations of <i>F</i>-inverse monoids in the extended signature can be studied by tools analogous to Stephen’s procedure in inverse monoids, in particular, we introduce the notions of <i>F</i>-Schützenberger graphs and <i>P</i>-expansions.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"173 1","pages":"297 - 316"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10474-024-01443-w.pdf","citationCount":"0","resultStr":"{\"title\":\"E-unitary and F-inverse monoids, and closure operators on group Cayley graphs\",\"authors\":\"N. Szakács\",\"doi\":\"10.1007/s10474-024-01443-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that the category of <i>X</i>-generated <i>E</i>-unitary inverse monoids with greatest group image <i>G</i> is equivalent to the category of <i>G</i>-invariant, finitary closure operators on the set of connected subgraphs of the Cayley graph of <i>G</i>. Analogously, we study <i>F</i>-inverse monoids in the extended signature <span>\\\\((\\\\cdot, 1, ^{-1}, ^\\\\mathfrak m)\\\\)</span>, and show that the category of <i>X</i>-generated <i>F</i>-inverse monoids with greatest group image <i>G</i> is equivalent to the category of <i>G</i>-invariant, finitary closure operators on the set of all subgraphs of the Cayley graph of <i>G</i>. As an application, we show that presentations of <i>F</i>-inverse monoids in the extended signature can be studied by tools analogous to Stephen’s procedure in inverse monoids, in particular, we introduce the notions of <i>F</i>-Schützenberger graphs and <i>P</i>-expansions.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"173 1\",\"pages\":\"297 - 316\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10474-024-01443-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01443-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01443-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了具有最大群像 G 的 X 产生的 E 单元逆单元的范畴等价于 G 不变的、G 的 Cayley 图的连通子图集合上的有限闭包算子的范畴。与此类似,我们研究了扩展签名 \((\cdot, 1, ^{-1}, ^\mathfrak m)\)中的 F 逆单元,并证明具有最大群像 G 的 X 生成 F 逆单元的范畴等价于 G 的 Cayley 图的所有子图集合上的 G 不变、有限闭包算子的范畴。作为应用,我们展示了扩展签名中的 F 逆单元的呈现可以用类似于斯蒂芬在逆单元中的程序的工具来研究,特别是,我们引入了 F-Schützenberger 图和 P-expansions 的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-unitary and F-inverse monoids, and closure operators on group Cayley graphs

We show that the category of X-generated E-unitary inverse monoids with greatest group image G is equivalent to the category of G-invariant, finitary closure operators on the set of connected subgraphs of the Cayley graph of G. Analogously, we study F-inverse monoids in the extended signature \((\cdot, 1, ^{-1}, ^\mathfrak m)\), and show that the category of X-generated F-inverse monoids with greatest group image G is equivalent to the category of G-invariant, finitary closure operators on the set of all subgraphs of the Cayley graph of G. As an application, we show that presentations of F-inverse monoids in the extended signature can be studied by tools analogous to Stephen’s procedure in inverse monoids, in particular, we introduce the notions of F-Schützenberger graphs and P-expansions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信