M. Takenoya, Yoshiaki Hiratsuka, K. Shimamura, Shinsaku Ito, Yasuyuki Sasaki, Shunsuke Yajima
{"title":"放线菌中一种负责对羟基苯甲酸酯分解的酰胺酶及其操作子的特征","authors":"M. Takenoya, Yoshiaki Hiratsuka, K. Shimamura, Shinsaku Ito, Yasuyuki Sasaki, Shunsuke Yajima","doi":"10.1093/bbb/zbae083","DOIUrl":null,"url":null,"abstract":"\n Hydrazidase from Microbacterium hydrocarbonoxydans was revealed to catalyze synthetic hydrazide compounds, enabling the bacteria to grow with them as sole carbon source, but natural substrates have remained unknown.\n In this study, kinetic analyses of hydrazidase with parabens showed that the compounds can be substrates. Then, methylparaben induced gene expressions of the operon containing hydrazidase and ABC transporter, and the compound as sole carbon source was able to grow the bacteria. Furthermore, homology search was carried out revealing that several actinomycetes possess hydrazidase-homolog in the operon. Among those bacteria, an amidase from Pseudonocardia acaciae was subjected to a kinetic analysis and a structure determination revealing similar but not identical to those of hydrazidase.\n Since parabens are reported to exist in plants and soil, and several actinomycetes codes the homologous operon, the enzymes with those operons may play a physiologically important role for bacterial survival with use of parabens.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing an amidase and its operon from actinomycete bacteria responsible for paraben catabolism\",\"authors\":\"M. Takenoya, Yoshiaki Hiratsuka, K. Shimamura, Shinsaku Ito, Yasuyuki Sasaki, Shunsuke Yajima\",\"doi\":\"10.1093/bbb/zbae083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hydrazidase from Microbacterium hydrocarbonoxydans was revealed to catalyze synthetic hydrazide compounds, enabling the bacteria to grow with them as sole carbon source, but natural substrates have remained unknown.\\n In this study, kinetic analyses of hydrazidase with parabens showed that the compounds can be substrates. Then, methylparaben induced gene expressions of the operon containing hydrazidase and ABC transporter, and the compound as sole carbon source was able to grow the bacteria. Furthermore, homology search was carried out revealing that several actinomycetes possess hydrazidase-homolog in the operon. Among those bacteria, an amidase from Pseudonocardia acaciae was subjected to a kinetic analysis and a structure determination revealing similar but not identical to those of hydrazidase.\\n Since parabens are reported to exist in plants and soil, and several actinomycetes codes the homologous operon, the enzymes with those operons may play a physiologically important role for bacterial survival with use of parabens.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbae083\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae083","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Characterizing an amidase and its operon from actinomycete bacteria responsible for paraben catabolism
Hydrazidase from Microbacterium hydrocarbonoxydans was revealed to catalyze synthetic hydrazide compounds, enabling the bacteria to grow with them as sole carbon source, but natural substrates have remained unknown.
In this study, kinetic analyses of hydrazidase with parabens showed that the compounds can be substrates. Then, methylparaben induced gene expressions of the operon containing hydrazidase and ABC transporter, and the compound as sole carbon source was able to grow the bacteria. Furthermore, homology search was carried out revealing that several actinomycetes possess hydrazidase-homolog in the operon. Among those bacteria, an amidase from Pseudonocardia acaciae was subjected to a kinetic analysis and a structure determination revealing similar but not identical to those of hydrazidase.
Since parabens are reported to exist in plants and soil, and several actinomycetes codes the homologous operon, the enzymes with those operons may play a physiologically important role for bacterial survival with use of parabens.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.