Merve Eryilmaz, Artem Goncharov, Gyeo-Re Han, Hyou-Arm Joung, Zachary S. Ballard, Rajesh Ghosh, Yijie Zhang, Dino Di Carlo* and Aydogan Ozcan*,
{"title":"利用机器学习监测 SARS-COV-2 免疫力的纸质多重血清学试验","authors":"Merve Eryilmaz, Artem Goncharov, Gyeo-Re Han, Hyou-Arm Joung, Zachary S. Ballard, Rajesh Ghosh, Yijie Zhang, Dino Di Carlo* and Aydogan Ozcan*, ","doi":"10.1021/acsnano.4c02434","DOIUrl":null,"url":null,"abstract":"<p >The rapid spread of SARS-CoV-2 caused the COVID-19 pandemic and accelerated vaccine development to prevent the spread of the virus and control the disease. Given the sustained high infectivity and evolution of SARS-CoV-2, there is an ongoing interest in developing COVID-19 serology tests to monitor population-level immunity. To address this critical need, we designed a paper-based multiplexed vertical flow assay (xVFA) using five structural proteins of SARS-CoV-2, detecting IgG and IgM antibodies to monitor changes in COVID-19 immunity levels. Our platform not only tracked longitudinal immunity levels but also categorized COVID-19 immunity into three groups: protected, unprotected, and infected, based on the levels of IgG and IgM antibodies. We operated two xVFAs in parallel to detect IgG and IgM antibodies using a total of 40 μL of human serum sample in <20 min per test. After the assay, images of the paper-based sensor panel were captured using a mobile phone-based custom-designed optical reader and then processed by a neural network-based serodiagnostic algorithm. The serodiagnostic algorithm was trained with 120 measurements/tests and 30 serum samples from 7 randomly selected individuals and was blindly tested with 31 serum samples from 8 different individuals, collected before vaccination as well as after vaccination or infection, achieving an accuracy of 89.5%. The competitive performance of the xVFA, along with its portability, cost-effectiveness, and rapid operation, makes it a promising computational point-of-care (POC) serology test for monitoring COVID-19 immunity, aiding in timely decisions on the administration of booster vaccines and general public health policies to protect vulnerable populations.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 26","pages":"16819–16831"},"PeriodicalIF":15.8000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c02434","citationCount":"0","resultStr":"{\"title\":\"A Paper-Based Multiplexed Serological Test to Monitor Immunity against SARS-COV-2 Using Machine Learning\",\"authors\":\"Merve Eryilmaz, Artem Goncharov, Gyeo-Re Han, Hyou-Arm Joung, Zachary S. Ballard, Rajesh Ghosh, Yijie Zhang, Dino Di Carlo* and Aydogan Ozcan*, \",\"doi\":\"10.1021/acsnano.4c02434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The rapid spread of SARS-CoV-2 caused the COVID-19 pandemic and accelerated vaccine development to prevent the spread of the virus and control the disease. Given the sustained high infectivity and evolution of SARS-CoV-2, there is an ongoing interest in developing COVID-19 serology tests to monitor population-level immunity. To address this critical need, we designed a paper-based multiplexed vertical flow assay (xVFA) using five structural proteins of SARS-CoV-2, detecting IgG and IgM antibodies to monitor changes in COVID-19 immunity levels. Our platform not only tracked longitudinal immunity levels but also categorized COVID-19 immunity into three groups: protected, unprotected, and infected, based on the levels of IgG and IgM antibodies. We operated two xVFAs in parallel to detect IgG and IgM antibodies using a total of 40 μL of human serum sample in <20 min per test. After the assay, images of the paper-based sensor panel were captured using a mobile phone-based custom-designed optical reader and then processed by a neural network-based serodiagnostic algorithm. The serodiagnostic algorithm was trained with 120 measurements/tests and 30 serum samples from 7 randomly selected individuals and was blindly tested with 31 serum samples from 8 different individuals, collected before vaccination as well as after vaccination or infection, achieving an accuracy of 89.5%. The competitive performance of the xVFA, along with its portability, cost-effectiveness, and rapid operation, makes it a promising computational point-of-care (POC) serology test for monitoring COVID-19 immunity, aiding in timely decisions on the administration of booster vaccines and general public health policies to protect vulnerable populations.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"18 26\",\"pages\":\"16819–16831\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c02434\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c02434\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c02434","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Paper-Based Multiplexed Serological Test to Monitor Immunity against SARS-COV-2 Using Machine Learning
The rapid spread of SARS-CoV-2 caused the COVID-19 pandemic and accelerated vaccine development to prevent the spread of the virus and control the disease. Given the sustained high infectivity and evolution of SARS-CoV-2, there is an ongoing interest in developing COVID-19 serology tests to monitor population-level immunity. To address this critical need, we designed a paper-based multiplexed vertical flow assay (xVFA) using five structural proteins of SARS-CoV-2, detecting IgG and IgM antibodies to monitor changes in COVID-19 immunity levels. Our platform not only tracked longitudinal immunity levels but also categorized COVID-19 immunity into three groups: protected, unprotected, and infected, based on the levels of IgG and IgM antibodies. We operated two xVFAs in parallel to detect IgG and IgM antibodies using a total of 40 μL of human serum sample in <20 min per test. After the assay, images of the paper-based sensor panel were captured using a mobile phone-based custom-designed optical reader and then processed by a neural network-based serodiagnostic algorithm. The serodiagnostic algorithm was trained with 120 measurements/tests and 30 serum samples from 7 randomly selected individuals and was blindly tested with 31 serum samples from 8 different individuals, collected before vaccination as well as after vaccination or infection, achieving an accuracy of 89.5%. The competitive performance of the xVFA, along with its portability, cost-effectiveness, and rapid operation, makes it a promising computational point-of-care (POC) serology test for monitoring COVID-19 immunity, aiding in timely decisions on the administration of booster vaccines and general public health policies to protect vulnerable populations.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.