{"title":"用大鼠-小鼠脑嵌合体跨越再生神经科学中的物种界限","authors":"Stefano Pluchino, Ivan Lombardi","doi":"10.1038/s41684-024-01394-3","DOIUrl":null,"url":null,"abstract":"Understanding the inherent complexity of organogenesis and addressing the persistent shortage of organ donors remain paramount scientific challenges. Recent advances in chimeric blastocyst technology offer promising solutions. Two new pioneering studies have successfully generated functional rat–mouse brain chimeras, providing novel insights into brain development and potential regenerative therapies. However, several technical and ethical hurdles persist.","PeriodicalId":17936,"journal":{"name":"Lab Animal","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41684-024-01394-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Crossing species boundaries in regenerative neuroscience with rat–mouse brain chimeras\",\"authors\":\"Stefano Pluchino, Ivan Lombardi\",\"doi\":\"10.1038/s41684-024-01394-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the inherent complexity of organogenesis and addressing the persistent shortage of organ donors remain paramount scientific challenges. Recent advances in chimeric blastocyst technology offer promising solutions. Two new pioneering studies have successfully generated functional rat–mouse brain chimeras, providing novel insights into brain development and potential regenerative therapies. However, several technical and ethical hurdles persist.\",\"PeriodicalId\":17936,\"journal\":{\"name\":\"Lab Animal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41684-024-01394-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab Animal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.nature.com/articles/s41684-024-01394-3\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab Animal","FirstCategoryId":"97","ListUrlMain":"https://www.nature.com/articles/s41684-024-01394-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Crossing species boundaries in regenerative neuroscience with rat–mouse brain chimeras
Understanding the inherent complexity of organogenesis and addressing the persistent shortage of organ donors remain paramount scientific challenges. Recent advances in chimeric blastocyst technology offer promising solutions. Two new pioneering studies have successfully generated functional rat–mouse brain chimeras, providing novel insights into brain development and potential regenerative therapies. However, several technical and ethical hurdles persist.
期刊介绍:
LabAnimal is a Nature Research journal dedicated to in vivo science and technology that improves our basic understanding and use of model organisms of human health and disease. In addition to basic research, methods and technologies, LabAnimal also covers important news, business and regulatory matters that impact the development and application of model organisms for preclinical research.
LabAnimal's focus is on innovative in vivo methods, research and technology covering a wide range of model organisms. Our broad scope ensures that the work we publish reaches the widest possible audience. LabAnimal provides a rigorous and fair peer review of manuscripts, high standards for copyediting and production, and efficient publication.