平流层 O3 进入大气环境的机制:华北平原案例研究

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Yuehan Luo, Tianliang Zhao, Kai Meng, Jun Hu, Qingjian Yang, Yongqing Bai, Kai Yang, Weikang Fu, Chenghao Tan, Yifan Zhang, Yanzhe Zhang, Zhikuan Li
{"title":"平流层 O3 进入大气环境的机制:华北平原案例研究","authors":"Yuehan Luo, Tianliang Zhao, Kai Meng, Jun Hu, Qingjian Yang, Yongqing Bai, Kai Yang, Weikang Fu, Chenghao Tan, Yifan Zhang, Yanzhe Zhang, Zhikuan Li","doi":"10.5194/acp-24-7013-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Stratosphere-to-troposphere transport results in the stratospheric intrusion (SI) of O3 into the free troposphere through the folding of the tropopause. However, the mechanism of SI that influences the atmospheric environment through the cross-layer transport of O3 from the stratosphere and free troposphere to the atmospheric boundary layer has not been elucidated thoroughly. In this study, an SI event over the North China Plain (NCP; 33–40° N, 114–121° E) during 19–20 May 2019 was chosen to investigate the mechanism of the cross-layer transport of stratospheric O3 and its impact on the near-surface O3 based on multi-source reanalysis, observation data, and air quality modeling. The results revealed a mechanism of stratospheric O3 intrusion into the atmospheric environment induced by an extratropical cyclone system. The SI with downward transport of stratospheric O3 to the near-surface layer was driven by the extratropical cyclone system, with vertical coupling of the upper westerly trough, the middle of the northeast cold vortex (NECV), and the lower extratropical cyclone, in the troposphere. The deep trough in the westerly jet aroused the tropopause folding, and the lower-stratospheric O3 penetrated the folded tropopause into the upper and middle troposphere; the westerly trough was cut off to form a typical cold vortex in the upper and middle troposphere. The compensating downdrafts of the NECV further pushed the downward transport of stratospheric O3 in the free troposphere; the NECV activated an extratropical cyclone in the lower troposphere; and the vertical cyclonic circulation governed the stratospheric O3 from the free troposphere across the boundary layer top, invading the near-surface atmosphere. In this SI event, the average contribution of stratospheric O3 to near-surface O3 was accounted for at 26.77 %. The proposed meteorological mechanism of the vertical transport of stratospheric O3 into the near-surface atmosphere, driven by an extratropical cyclone system, could improve the understanding of the influence of stratospheric O3 on the atmospheric environment, with implications for the coordinated control of atmospheric pollution.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"43 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mechanism of stratospheric O3 intrusion into the atmospheric environment: a case study of the North China Plain\",\"authors\":\"Yuehan Luo, Tianliang Zhao, Kai Meng, Jun Hu, Qingjian Yang, Yongqing Bai, Kai Yang, Weikang Fu, Chenghao Tan, Yifan Zhang, Yanzhe Zhang, Zhikuan Li\",\"doi\":\"10.5194/acp-24-7013-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Stratosphere-to-troposphere transport results in the stratospheric intrusion (SI) of O3 into the free troposphere through the folding of the tropopause. However, the mechanism of SI that influences the atmospheric environment through the cross-layer transport of O3 from the stratosphere and free troposphere to the atmospheric boundary layer has not been elucidated thoroughly. In this study, an SI event over the North China Plain (NCP; 33–40° N, 114–121° E) during 19–20 May 2019 was chosen to investigate the mechanism of the cross-layer transport of stratospheric O3 and its impact on the near-surface O3 based on multi-source reanalysis, observation data, and air quality modeling. The results revealed a mechanism of stratospheric O3 intrusion into the atmospheric environment induced by an extratropical cyclone system. The SI with downward transport of stratospheric O3 to the near-surface layer was driven by the extratropical cyclone system, with vertical coupling of the upper westerly trough, the middle of the northeast cold vortex (NECV), and the lower extratropical cyclone, in the troposphere. The deep trough in the westerly jet aroused the tropopause folding, and the lower-stratospheric O3 penetrated the folded tropopause into the upper and middle troposphere; the westerly trough was cut off to form a typical cold vortex in the upper and middle troposphere. The compensating downdrafts of the NECV further pushed the downward transport of stratospheric O3 in the free troposphere; the NECV activated an extratropical cyclone in the lower troposphere; and the vertical cyclonic circulation governed the stratospheric O3 from the free troposphere across the boundary layer top, invading the near-surface atmosphere. In this SI event, the average contribution of stratospheric O3 to near-surface O3 was accounted for at 26.77 %. The proposed meteorological mechanism of the vertical transport of stratospheric O3 into the near-surface atmosphere, driven by an extratropical cyclone system, could improve the understanding of the influence of stratospheric O3 on the atmospheric environment, with implications for the coordinated control of atmospheric pollution.\",\"PeriodicalId\":8611,\"journal\":{\"name\":\"Atmospheric Chemistry and Physics\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Chemistry and Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/acp-24-7013-2024\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/acp-24-7013-2024","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要平流层到对流层的传输导致平流层中的 O3 通过对流层顶的折叠侵入自由对流层。然而,通过O3从平流层和自由对流层向大气边界层的跨层传输影响大气环境的SI机制尚未被彻底阐明。本研究选择了2019年5月19-20日华北平原(NCP;33-40° N,114-121° E)上空的一次SI事件,基于多源再分析、观测资料和空气质量模式,研究平流层O3的跨层传输机制及其对近地面O3的影响。研究结果揭示了平流层 O3 在副热带气旋系统诱导下侵入大气环境的机制。平流层 O3 向下传输到近表层的 SI 是由副热带气旋系统驱动的,在对流层中,西风槽上部、东北冷涡中部和副热带气旋下部垂直耦合。西风射流中的深槽引起对流层顶折叠,低层大气的 O3 穿过折叠的对流层顶进入对流层中上层;西风槽被切断,在对流层中上层形成典型的冷涡。NECV的补偿性下沉气流进一步推动了自由对流层中平流层O3的向下传输;NECV激活了对流层低层的一个外热带气旋;垂直气旋环流将自由对流层中的平流层O3穿过边界层顶,侵入近地面大气。在这次 SI 事件中,平流层 O3 对近地面 O3 的平均贡献率为 26.77%。所提出的平流层 O3 在平流层外气旋系统的驱动下垂直传输到近地表大气的气象机制,可以提高人们对平流层 O3 对大气环境的影响的认识,并对大气污染的协调控制产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mechanism of stratospheric O3 intrusion into the atmospheric environment: a case study of the North China Plain
Abstract. Stratosphere-to-troposphere transport results in the stratospheric intrusion (SI) of O3 into the free troposphere through the folding of the tropopause. However, the mechanism of SI that influences the atmospheric environment through the cross-layer transport of O3 from the stratosphere and free troposphere to the atmospheric boundary layer has not been elucidated thoroughly. In this study, an SI event over the North China Plain (NCP; 33–40° N, 114–121° E) during 19–20 May 2019 was chosen to investigate the mechanism of the cross-layer transport of stratospheric O3 and its impact on the near-surface O3 based on multi-source reanalysis, observation data, and air quality modeling. The results revealed a mechanism of stratospheric O3 intrusion into the atmospheric environment induced by an extratropical cyclone system. The SI with downward transport of stratospheric O3 to the near-surface layer was driven by the extratropical cyclone system, with vertical coupling of the upper westerly trough, the middle of the northeast cold vortex (NECV), and the lower extratropical cyclone, in the troposphere. The deep trough in the westerly jet aroused the tropopause folding, and the lower-stratospheric O3 penetrated the folded tropopause into the upper and middle troposphere; the westerly trough was cut off to form a typical cold vortex in the upper and middle troposphere. The compensating downdrafts of the NECV further pushed the downward transport of stratospheric O3 in the free troposphere; the NECV activated an extratropical cyclone in the lower troposphere; and the vertical cyclonic circulation governed the stratospheric O3 from the free troposphere across the boundary layer top, invading the near-surface atmosphere. In this SI event, the average contribution of stratospheric O3 to near-surface O3 was accounted for at 26.77 %. The proposed meteorological mechanism of the vertical transport of stratospheric O3 into the near-surface atmosphere, driven by an extratropical cyclone system, could improve the understanding of the influence of stratospheric O3 on the atmospheric environment, with implications for the coordinated control of atmospheric pollution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信