25- 羟基维生素 D 的直接和间接参考区间:维生素 D 缺乏症并未真正流行。

Juan José Perales-Afán, Diego Aparicio-Pelaz, Sheila López-Triguero, Elena Llorente, Juan José Puente-Lanzarote, Marta Fabre
{"title":"25- 羟基维生素 D 的直接和间接参考区间:维生素 D 缺乏症并未真正流行。","authors":"Juan José Perales-Afán, Diego Aparicio-Pelaz, Sheila López-Triguero, Elena Llorente, Juan José Puente-Lanzarote, Marta Fabre","doi":"10.11613/BM.2024.020706","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Many studies report vitamin D (25-OH-D) deficiency, although there is no consensus among scientific societies on cut-offs and reference intervals (RI). The aim of this study is to establish and compare RI for serum 25-OH-D by direct and indirect methods.</p><p><strong>Materials and methods: </strong>Two studies were performed in Zaragoza (Spain). A retrospective study (N = 7222) between January 2017 and April 2019 was used for RI calculation by indirect method and a prospective study (N = 312) with healthy volunteers recruited in August 2019 and February 2020 for direct method. Seasonal differences were investigated. Measurements were performed on Cobas C8000 (Roche-Diagnostics, Basel, Switzerland) using electrochemiluminescence immunoassay technology.</p><p><strong>Results: </strong>Reference intervals (2.5-97.5 percentile and corresponding 95% confidence intervals, CIs) were as follows: by indirect method 5.6 ng/mL (5.4 to 5.8) - 57.2 ng/mL (55.2 to 59.8), in winter 5.4 ng/mL (5.2 to 5.7) - 55.7 ng/mL (53.6 to 58.4), while in summer 5.9 ng/mL (5.4 to 6.2) - 59.9 ng/mL (56.3 to 62.9). By direct method 9.0 ng/mL (5.7 to 9.5) - 41.4 ng/mL (37.6 to 48.0), in winter 7.4 ng/mL (3.9 to 8.6) - 34.6 ng/mL (30.6 to 51.5), while in summer 13.3 ng/mL (10.1 to 14.1) - 44.1 ng/mL (38.9 to 66.0). In both methods, RIs were higher in summer. A significant difference was observed in 25-OH-D median values between the two methods (P < 0.001).</p><p><strong>Conclusions: </strong>Reference interval calculation according to the studied area may be a useful tool to adapt the deficiency cut-offs for 25-OH-D. Our data support 25-OH-D values over 12.0 ng/mL for healthy population as sufficient, therefore current recommendations should be updated. In addition, differences in seasonality should be taken into account.</p>","PeriodicalId":94370,"journal":{"name":"Biochemia medica","volume":"34 2","pages":"020706"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177660/pdf/","citationCount":"0","resultStr":"{\"title\":\"Direct and indirect reference intervals of 25-hydroxyvitamin D: it is not a real vitamin D deficiency pandemic.\",\"authors\":\"Juan José Perales-Afán, Diego Aparicio-Pelaz, Sheila López-Triguero, Elena Llorente, Juan José Puente-Lanzarote, Marta Fabre\",\"doi\":\"10.11613/BM.2024.020706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Many studies report vitamin D (25-OH-D) deficiency, although there is no consensus among scientific societies on cut-offs and reference intervals (RI). The aim of this study is to establish and compare RI for serum 25-OH-D by direct and indirect methods.</p><p><strong>Materials and methods: </strong>Two studies were performed in Zaragoza (Spain). A retrospective study (N = 7222) between January 2017 and April 2019 was used for RI calculation by indirect method and a prospective study (N = 312) with healthy volunteers recruited in August 2019 and February 2020 for direct method. Seasonal differences were investigated. Measurements were performed on Cobas C8000 (Roche-Diagnostics, Basel, Switzerland) using electrochemiluminescence immunoassay technology.</p><p><strong>Results: </strong>Reference intervals (2.5-97.5 percentile and corresponding 95% confidence intervals, CIs) were as follows: by indirect method 5.6 ng/mL (5.4 to 5.8) - 57.2 ng/mL (55.2 to 59.8), in winter 5.4 ng/mL (5.2 to 5.7) - 55.7 ng/mL (53.6 to 58.4), while in summer 5.9 ng/mL (5.4 to 6.2) - 59.9 ng/mL (56.3 to 62.9). By direct method 9.0 ng/mL (5.7 to 9.5) - 41.4 ng/mL (37.6 to 48.0), in winter 7.4 ng/mL (3.9 to 8.6) - 34.6 ng/mL (30.6 to 51.5), while in summer 13.3 ng/mL (10.1 to 14.1) - 44.1 ng/mL (38.9 to 66.0). In both methods, RIs were higher in summer. A significant difference was observed in 25-OH-D median values between the two methods (P < 0.001).</p><p><strong>Conclusions: </strong>Reference interval calculation according to the studied area may be a useful tool to adapt the deficiency cut-offs for 25-OH-D. Our data support 25-OH-D values over 12.0 ng/mL for healthy population as sufficient, therefore current recommendations should be updated. In addition, differences in seasonality should be taken into account.</p>\",\"PeriodicalId\":94370,\"journal\":{\"name\":\"Biochemia medica\",\"volume\":\"34 2\",\"pages\":\"020706\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177660/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemia medica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11613/BM.2024.020706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemia medica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11613/BM.2024.020706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导言:许多研究都报告了维生素 D(25-OH-D)缺乏症,但科学协会对临界值和参考区间(RI)尚未达成共识。本研究旨在通过直接和间接方法确定并比较血清 25-OH-D 的参考区间:在萨拉戈萨(西班牙)进行了两项研究。一项回顾性研究(N = 7222)于 2017 年 1 月至 2019 年 4 月间采用间接法计算 RI,一项前瞻性研究(N = 312)于 2019 年 8 月至 2020 年 2 月间招募健康志愿者采用直接法计算 RI。研究还调查了季节性差异。采用电化学发光免疫测定技术,在 Cobas C8000(罗氏诊断公司,瑞士巴塞尔)上进行测量:参考区间(2.5-97.5 百分位数和相应的 95% 置信区间,CIs)如下:间接法 5.6 纳克/毫升(5.4 至 5.8)- 57.2 纳克/毫升(55.2 至 59.8),冬季为 5.4 纳克/毫升(5.2 至 5.7)- 55.7 纳克/毫升(53.6 至 58.4),夏季为 5.9 纳克/毫升(5.4 至 6.2)- 59.9 纳克/毫升(56.3 至 62.9)。通过直接法,9.0 纳克/毫升(5.7 至 9.5)- 41.4 纳克/毫升(37.6 至 48.0),冬季 7.4 纳克/毫升(3.9 至 8.6)- 34.6 纳克/毫升(30.6 至 51.5),而夏季 13.3 纳克/毫升(10.1 至 14.1)- 44.1 纳克/毫升(38.9 至 66.0)。在两种方法中,夏季的 RIs 都较高。两种方法的 25-OH-D 中位值差异明显(P < 0.001):根据研究地区计算参考区间可能是调整 25-OH-D 缺乏临界值的有用工具。我们的数据支持健康人群的 25-OH-D 值超过 12.0 纳克/毫升就足够了,因此应更新当前的建议。此外,还应考虑季节性差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct and indirect reference intervals of 25-hydroxyvitamin D: it is not a real vitamin D deficiency pandemic.

Introduction: Many studies report vitamin D (25-OH-D) deficiency, although there is no consensus among scientific societies on cut-offs and reference intervals (RI). The aim of this study is to establish and compare RI for serum 25-OH-D by direct and indirect methods.

Materials and methods: Two studies were performed in Zaragoza (Spain). A retrospective study (N = 7222) between January 2017 and April 2019 was used for RI calculation by indirect method and a prospective study (N = 312) with healthy volunteers recruited in August 2019 and February 2020 for direct method. Seasonal differences were investigated. Measurements were performed on Cobas C8000 (Roche-Diagnostics, Basel, Switzerland) using electrochemiluminescence immunoassay technology.

Results: Reference intervals (2.5-97.5 percentile and corresponding 95% confidence intervals, CIs) were as follows: by indirect method 5.6 ng/mL (5.4 to 5.8) - 57.2 ng/mL (55.2 to 59.8), in winter 5.4 ng/mL (5.2 to 5.7) - 55.7 ng/mL (53.6 to 58.4), while in summer 5.9 ng/mL (5.4 to 6.2) - 59.9 ng/mL (56.3 to 62.9). By direct method 9.0 ng/mL (5.7 to 9.5) - 41.4 ng/mL (37.6 to 48.0), in winter 7.4 ng/mL (3.9 to 8.6) - 34.6 ng/mL (30.6 to 51.5), while in summer 13.3 ng/mL (10.1 to 14.1) - 44.1 ng/mL (38.9 to 66.0). In both methods, RIs were higher in summer. A significant difference was observed in 25-OH-D median values between the two methods (P < 0.001).

Conclusions: Reference interval calculation according to the studied area may be a useful tool to adapt the deficiency cut-offs for 25-OH-D. Our data support 25-OH-D values over 12.0 ng/mL for healthy population as sufficient, therefore current recommendations should be updated. In addition, differences in seasonality should be taken into account.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信