发现使用问题色情制品的最可靠预测因素:一项横跨 16 个国家的大规模机器学习研究。

IF 3.1 Q2 PSYCHIATRY
Journal of psychopathology and clinical science Pub Date : 2024-08-01 Epub Date: 2024-06-17 DOI:10.1037/abn0000913
Beáta Bőthe, Marie-Pier Vaillancourt-Morel, Sophie Bergeron, Zsombor Hermann, Krisztián Ivaskevics, Shane W Kraus, Joshua B Grubbs
{"title":"发现使用问题色情制品的最可靠预测因素:一项横跨 16 个国家的大规模机器学习研究。","authors":"Beáta Bőthe, Marie-Pier Vaillancourt-Morel, Sophie Bergeron, Zsombor Hermann, Krisztián Ivaskevics, Shane W Kraus, Joshua B Grubbs","doi":"10.1037/abn0000913","DOIUrl":null,"url":null,"abstract":"<p><p>Problematic pornography use (PPU) is the most common manifestation of the newly introduced compulsive sexual behavior disorder diagnosis in the 11th revision of the International Classification of Diseases. Research related to PPU has proliferated in the past two decades, but most prior studies were characterized by several shortcomings (e.g., using homogenous, small samples), resulting in crucial knowledge gaps and a limited understanding concerning empirically based risk factors for PPU. This study aimed to identify the most robust risk factors for PPU using a preregistered study design. Independent laboratories' 74 preexisting self-report data sets (<i>N</i><sub>participants</sub> = 112,397; <i>N</i><sub>countries</sub> = 16) were combined to identify which factors can best predict PPU using an artificial intelligence-based method (i.e., machine learning). We conducted random forest models on each data set to examine how different sociodemographic, psychological, and other characteristics predict PPU, and combined the results of all data sets using random-effects meta-analysis with meta-analytic moderators (e.g., community vs. treatment-seeking samples). Predictors explained 45.84% of the variance in PPU scores. Out of the 700+ potential predictors, 17 variables emerged as significant predictors across data sets, with the top five being (a) pornography use frequency, (b) emotional avoidance pornography use motivation, (c) stress reduction pornography use motivation, (d) moral incongruence toward pornography use, and (e) sexual shame. This study is the largest and most integrative data analytic effort in the field to date. Findings contribute to a better understanding of PPU's etiology and may provide deeper insights for developing more efficient, cost-effective, empirically based directions for future research as well as prevention and intervention programs targeting PPU. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":73914,"journal":{"name":"Journal of psychopathology and clinical science","volume":" ","pages":"489-502"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering the most robust predictors of problematic pornography use: A large-scale machine learning study across 16 countries.\",\"authors\":\"Beáta Bőthe, Marie-Pier Vaillancourt-Morel, Sophie Bergeron, Zsombor Hermann, Krisztián Ivaskevics, Shane W Kraus, Joshua B Grubbs\",\"doi\":\"10.1037/abn0000913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Problematic pornography use (PPU) is the most common manifestation of the newly introduced compulsive sexual behavior disorder diagnosis in the 11th revision of the International Classification of Diseases. Research related to PPU has proliferated in the past two decades, but most prior studies were characterized by several shortcomings (e.g., using homogenous, small samples), resulting in crucial knowledge gaps and a limited understanding concerning empirically based risk factors for PPU. This study aimed to identify the most robust risk factors for PPU using a preregistered study design. Independent laboratories' 74 preexisting self-report data sets (<i>N</i><sub>participants</sub> = 112,397; <i>N</i><sub>countries</sub> = 16) were combined to identify which factors can best predict PPU using an artificial intelligence-based method (i.e., machine learning). We conducted random forest models on each data set to examine how different sociodemographic, psychological, and other characteristics predict PPU, and combined the results of all data sets using random-effects meta-analysis with meta-analytic moderators (e.g., community vs. treatment-seeking samples). Predictors explained 45.84% of the variance in PPU scores. Out of the 700+ potential predictors, 17 variables emerged as significant predictors across data sets, with the top five being (a) pornography use frequency, (b) emotional avoidance pornography use motivation, (c) stress reduction pornography use motivation, (d) moral incongruence toward pornography use, and (e) sexual shame. This study is the largest and most integrative data analytic effort in the field to date. Findings contribute to a better understanding of PPU's etiology and may provide deeper insights for developing more efficient, cost-effective, empirically based directions for future research as well as prevention and intervention programs targeting PPU. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":73914,\"journal\":{\"name\":\"Journal of psychopathology and clinical science\",\"volume\":\" \",\"pages\":\"489-502\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of psychopathology and clinical science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1037/abn0000913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of psychopathology and clinical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1037/abn0000913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

问题性色情使用(PPU)是《国际疾病分类》第 11 次修订版中新引入的强迫性性行为障碍诊断中最常见的表现形式。在过去的二十年中,与 PPU 相关的研究如雨后春笋般涌现,但之前的大多数研究都存在一些缺陷(如使用同质、小样本),导致知识缺口严重,人们对基于经验的 PPU 风险因素的了解也十分有限。本研究旨在通过预先登记的研究设计来确定 PPU 最可靠的风险因素。我们将独立实验室的 74 个预先存在的自我报告数据集(Nparticipants = 112,397; Ncountries = 16)合并在一起,利用基于人工智能的方法(即机器学习)确定哪些因素最能预测 PPU。我们在每个数据集上建立了随机森林模型,以研究不同的社会人口、心理和其他特征如何预测 PPU,并使用随机效应荟萃分析和荟萃分析调节器(如社区样本与寻求治疗样本)将所有数据集的结果合并在一起。预测因子解释了 45.84% 的 PPU 分数差异。在 700 多个潜在的预测因子中,有 17 个变量在不同的数据集中成为显著的预测因子,其中排名前五的变量分别是:(a)色情制品使用频率;(b)情绪回避色情制品使用动机;(c)压力减轻色情制品使用动机;(d)对色情制品使用的道德不协调;以及(e)性羞耻感。这项研究是迄今为止该领域规模最大、最具综合性的数据分析工作。研究结果有助于人们更好地了解 PPU 的病因,并为制定更有效、更具成本效益、基于经验的未来研究方向以及针对 PPU 的预防和干预计划提供更深入的见解。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncovering the most robust predictors of problematic pornography use: A large-scale machine learning study across 16 countries.

Problematic pornography use (PPU) is the most common manifestation of the newly introduced compulsive sexual behavior disorder diagnosis in the 11th revision of the International Classification of Diseases. Research related to PPU has proliferated in the past two decades, but most prior studies were characterized by several shortcomings (e.g., using homogenous, small samples), resulting in crucial knowledge gaps and a limited understanding concerning empirically based risk factors for PPU. This study aimed to identify the most robust risk factors for PPU using a preregistered study design. Independent laboratories' 74 preexisting self-report data sets (Nparticipants = 112,397; Ncountries = 16) were combined to identify which factors can best predict PPU using an artificial intelligence-based method (i.e., machine learning). We conducted random forest models on each data set to examine how different sociodemographic, psychological, and other characteristics predict PPU, and combined the results of all data sets using random-effects meta-analysis with meta-analytic moderators (e.g., community vs. treatment-seeking samples). Predictors explained 45.84% of the variance in PPU scores. Out of the 700+ potential predictors, 17 variables emerged as significant predictors across data sets, with the top five being (a) pornography use frequency, (b) emotional avoidance pornography use motivation, (c) stress reduction pornography use motivation, (d) moral incongruence toward pornography use, and (e) sexual shame. This study is the largest and most integrative data analytic effort in the field to date. Findings contribute to a better understanding of PPU's etiology and may provide deeper insights for developing more efficient, cost-effective, empirically based directions for future research as well as prevention and intervention programs targeting PPU. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信