Ting-Yu Hsu, Chi-Yung Cheng, I-Min Chiu, Chun-Hung Richard Lin, Fu-Jen Cheng, Hsiu-Yung Pan, Yu-Jih Su, Chao-Jui Li
{"title":"用于预测住院老年病人 72 小时内严重不良事件的可解释深度学习模型。","authors":"Ting-Yu Hsu, Chi-Yung Cheng, I-Min Chiu, Chun-Hung Richard Lin, Fu-Jen Cheng, Hsiu-Yung Pan, Yu-Jih Su, Chao-Jui Li","doi":"10.2147/CIA.S460562","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The global aging population presents a significant challenge, with older adults experiencing declining physical and cognitive abilities and increased vulnerability to chronic diseases and adverse health outcomes. This study aims to develop an interpretable deep learning (DL) model to predict adverse events in geriatric patients within 72 hours of hospitalization.</p><p><strong>Methods: </strong>The study used retrospective data (2017-2020) from a major medical center in Taiwan. It included non-trauma geriatric patients who visited the emergency department and were admitted to the general ward. Data preprocessing involved collecting prognostic factors like vital signs, lab results, medical history, and clinical management. A deep feedforward neural network was developed, and performance was evaluated using accuracy, sensitivity, specificity, positive predictive value (PPV), and area under the receiver operating characteristic curve (AUC). Model interpretation utilized the Shapley Additive Explanation (SHAP) technique.</p><p><strong>Results: </strong>The analysis included 127,268 patients, with 2.6% experiencing imminent intensive care unit transfer, respiratory failure, or death during hospitalization. The DL model achieved AUCs of 0.86 and 0.84 in the validation and test sets, respectively, outperforming the Sequential Organ Failure Assessment (SOFA) score. Sensitivity and specificity values ranged from 0.79 to 0.81. The SHAP technique provided insights into feature importance and interactions.</p><p><strong>Conclusion: </strong>The developed DL model demonstrated high accuracy in predicting serious adverse events in geriatric patients within 72 hours of hospitalization. It outperformed the SOFA score and provided valuable insights into the model's decision-making process.</p>","PeriodicalId":48841,"journal":{"name":"Clinical Interventions in Aging","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180436/pdf/","citationCount":"0","resultStr":"{\"title\":\"Explainable Deep Learning Model for Predicting Serious Adverse Events in Hospitalized Geriatric Patients Within 72 Hours.\",\"authors\":\"Ting-Yu Hsu, Chi-Yung Cheng, I-Min Chiu, Chun-Hung Richard Lin, Fu-Jen Cheng, Hsiu-Yung Pan, Yu-Jih Su, Chao-Jui Li\",\"doi\":\"10.2147/CIA.S460562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The global aging population presents a significant challenge, with older adults experiencing declining physical and cognitive abilities and increased vulnerability to chronic diseases and adverse health outcomes. This study aims to develop an interpretable deep learning (DL) model to predict adverse events in geriatric patients within 72 hours of hospitalization.</p><p><strong>Methods: </strong>The study used retrospective data (2017-2020) from a major medical center in Taiwan. It included non-trauma geriatric patients who visited the emergency department and were admitted to the general ward. Data preprocessing involved collecting prognostic factors like vital signs, lab results, medical history, and clinical management. A deep feedforward neural network was developed, and performance was evaluated using accuracy, sensitivity, specificity, positive predictive value (PPV), and area under the receiver operating characteristic curve (AUC). Model interpretation utilized the Shapley Additive Explanation (SHAP) technique.</p><p><strong>Results: </strong>The analysis included 127,268 patients, with 2.6% experiencing imminent intensive care unit transfer, respiratory failure, or death during hospitalization. The DL model achieved AUCs of 0.86 and 0.84 in the validation and test sets, respectively, outperforming the Sequential Organ Failure Assessment (SOFA) score. Sensitivity and specificity values ranged from 0.79 to 0.81. The SHAP technique provided insights into feature importance and interactions.</p><p><strong>Conclusion: </strong>The developed DL model demonstrated high accuracy in predicting serious adverse events in geriatric patients within 72 hours of hospitalization. It outperformed the SOFA score and provided valuable insights into the model's decision-making process.</p>\",\"PeriodicalId\":48841,\"journal\":{\"name\":\"Clinical Interventions in Aging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180436/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Interventions in Aging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/CIA.S460562\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Interventions in Aging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/CIA.S460562","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Explainable Deep Learning Model for Predicting Serious Adverse Events in Hospitalized Geriatric Patients Within 72 Hours.
Background: The global aging population presents a significant challenge, with older adults experiencing declining physical and cognitive abilities and increased vulnerability to chronic diseases and adverse health outcomes. This study aims to develop an interpretable deep learning (DL) model to predict adverse events in geriatric patients within 72 hours of hospitalization.
Methods: The study used retrospective data (2017-2020) from a major medical center in Taiwan. It included non-trauma geriatric patients who visited the emergency department and were admitted to the general ward. Data preprocessing involved collecting prognostic factors like vital signs, lab results, medical history, and clinical management. A deep feedforward neural network was developed, and performance was evaluated using accuracy, sensitivity, specificity, positive predictive value (PPV), and area under the receiver operating characteristic curve (AUC). Model interpretation utilized the Shapley Additive Explanation (SHAP) technique.
Results: The analysis included 127,268 patients, with 2.6% experiencing imminent intensive care unit transfer, respiratory failure, or death during hospitalization. The DL model achieved AUCs of 0.86 and 0.84 in the validation and test sets, respectively, outperforming the Sequential Organ Failure Assessment (SOFA) score. Sensitivity and specificity values ranged from 0.79 to 0.81. The SHAP technique provided insights into feature importance and interactions.
Conclusion: The developed DL model demonstrated high accuracy in predicting serious adverse events in geriatric patients within 72 hours of hospitalization. It outperformed the SOFA score and provided valuable insights into the model's decision-making process.
期刊介绍:
Clinical Interventions in Aging, is an online, peer reviewed, open access journal focusing on concise rapid reporting of original research and reviews in aging. Special attention will be given to papers reporting on actual or potential clinical applications leading to improved prevention or treatment of disease or a greater understanding of pathological processes that result from maladaptive changes in the body associated with aging. This journal is directed at a wide array of scientists, engineers, pharmacists, pharmacologists and clinical specialists wishing to maintain an up to date knowledge of this exciting and emerging field.