Martina Mugnai, Edoardo Auriemma, Barbara Contiero, Delia Franchini, Eric Zini, Federica Tirrito
{"title":"使用钆造影剂对犬大脑感度加权成像的影响","authors":"Martina Mugnai, Edoardo Auriemma, Barbara Contiero, Delia Franchini, Eric Zini, Federica Tirrito","doi":"10.1111/vru.13395","DOIUrl":null,"url":null,"abstract":"<p><p>Susceptibility-weighted imaging (SWI) is a gradient echo (GE) MRI sequence. Intravenous administration of gadolinium (Gd) may affect GE images, but its effect on SWI has not been investigated in veterinary medicine. This cross-sectional prospective study evaluated the effects of Gd on SWI. Seventy-one dogs that underwent brain MRI were included and distributed in two groups. Susceptibility-weighted imaging was performed pre- and postcontrast, obtained immediately after Gd administration (Group A: n = 35) or delayed (Group B: n = 36; median delay 19.9 min). Pre- and post-Gd SWI were analyzed for signal intensity changes in the lentiform nuclei of gray matter (GM), in the centrum semiovale of white matter (WM), and in brain lesions. No difference in GM signal intensity was identified in either group between pre- and postcontrast images (Group A, P = .395; Group B, P = .895). In group A, WM signal intensity was lower in pre- than post-Gd sequences (P = .019). Brain lesions were identified in 30/71 (41%) cases; the signal intensity of intracranial lesions was significantly lower in pre- than post-Gd images in both groups (P < .001); the number of lesions influenced the difference in signal intensity in group B (P = .043). Susceptibility artifacts did not change in appearance between pre- and postcontrast images in either the normal brain or in parenchymal lesions. In conclusion, Gd may modify the signal intensity of WM and brain lesions but does not affect the susceptibility artifacts and does not interfere with SWI interpretation.</p>","PeriodicalId":23581,"journal":{"name":"Veterinary Radiology & Ultrasound","volume":" ","pages":"539-546"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of gadolinium contrast medium administration on susceptibility-weighted imaging of the canine brain.\",\"authors\":\"Martina Mugnai, Edoardo Auriemma, Barbara Contiero, Delia Franchini, Eric Zini, Federica Tirrito\",\"doi\":\"10.1111/vru.13395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Susceptibility-weighted imaging (SWI) is a gradient echo (GE) MRI sequence. Intravenous administration of gadolinium (Gd) may affect GE images, but its effect on SWI has not been investigated in veterinary medicine. This cross-sectional prospective study evaluated the effects of Gd on SWI. Seventy-one dogs that underwent brain MRI were included and distributed in two groups. Susceptibility-weighted imaging was performed pre- and postcontrast, obtained immediately after Gd administration (Group A: n = 35) or delayed (Group B: n = 36; median delay 19.9 min). Pre- and post-Gd SWI were analyzed for signal intensity changes in the lentiform nuclei of gray matter (GM), in the centrum semiovale of white matter (WM), and in brain lesions. No difference in GM signal intensity was identified in either group between pre- and postcontrast images (Group A, P = .395; Group B, P = .895). In group A, WM signal intensity was lower in pre- than post-Gd sequences (P = .019). Brain lesions were identified in 30/71 (41%) cases; the signal intensity of intracranial lesions was significantly lower in pre- than post-Gd images in both groups (P < .001); the number of lesions influenced the difference in signal intensity in group B (P = .043). Susceptibility artifacts did not change in appearance between pre- and postcontrast images in either the normal brain or in parenchymal lesions. In conclusion, Gd may modify the signal intensity of WM and brain lesions but does not affect the susceptibility artifacts and does not interfere with SWI interpretation.</p>\",\"PeriodicalId\":23581,\"journal\":{\"name\":\"Veterinary Radiology & Ultrasound\",\"volume\":\" \",\"pages\":\"539-546\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Radiology & Ultrasound\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/vru.13395\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Radiology & Ultrasound","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/vru.13395","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Effect of gadolinium contrast medium administration on susceptibility-weighted imaging of the canine brain.
Susceptibility-weighted imaging (SWI) is a gradient echo (GE) MRI sequence. Intravenous administration of gadolinium (Gd) may affect GE images, but its effect on SWI has not been investigated in veterinary medicine. This cross-sectional prospective study evaluated the effects of Gd on SWI. Seventy-one dogs that underwent brain MRI were included and distributed in two groups. Susceptibility-weighted imaging was performed pre- and postcontrast, obtained immediately after Gd administration (Group A: n = 35) or delayed (Group B: n = 36; median delay 19.9 min). Pre- and post-Gd SWI were analyzed for signal intensity changes in the lentiform nuclei of gray matter (GM), in the centrum semiovale of white matter (WM), and in brain lesions. No difference in GM signal intensity was identified in either group between pre- and postcontrast images (Group A, P = .395; Group B, P = .895). In group A, WM signal intensity was lower in pre- than post-Gd sequences (P = .019). Brain lesions were identified in 30/71 (41%) cases; the signal intensity of intracranial lesions was significantly lower in pre- than post-Gd images in both groups (P < .001); the number of lesions influenced the difference in signal intensity in group B (P = .043). Susceptibility artifacts did not change in appearance between pre- and postcontrast images in either the normal brain or in parenchymal lesions. In conclusion, Gd may modify the signal intensity of WM and brain lesions but does not affect the susceptibility artifacts and does not interfere with SWI interpretation.
期刊介绍:
Veterinary Radiology & Ultrasound is a bimonthly, international, peer-reviewed, research journal devoted to the fields of veterinary diagnostic imaging and radiation oncology. Established in 1958, it is owned by the American College of Veterinary Radiology and is also the official journal for six affiliate veterinary organizations. Veterinary Radiology & Ultrasound is represented on the International Committee of Medical Journal Editors, World Association of Medical Editors, and Committee on Publication Ethics.
The mission of Veterinary Radiology & Ultrasound is to serve as a leading resource for high quality articles that advance scientific knowledge and standards of clinical practice in the areas of veterinary diagnostic radiology, computed tomography, magnetic resonance imaging, ultrasonography, nuclear imaging, radiation oncology, and interventional radiology. Manuscript types include original investigations, imaging diagnosis reports, review articles, editorials and letters to the Editor. Acceptance criteria include originality, significance, quality, reader interest, composition and adherence to author guidelines.