{"title":"逆行追踪乳腺癌相关感觉神经元","authors":"Svetllana Kallogjerovic, Inés Velázquez-Quesada, Rutva Hadap, Bojana Gligorijevic","doi":"10.1111/jmi.13340","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is one of the leading causes of mortality among women. The tumour microenvironment, consisting of host cells and extracellular matrix, has been increasingly studied for its interplay with cancer cells, and the resulting effect on tumour progression. While the breast is one of the most innervated organs in the body, the role of neurons, and specifically sensory neurons, has been understudied, mostly for technical reasons. One of the reasons is the anatomy of sensory neurons: sensory neuron somas are located in the spine, and their axons can extend longer than a meter across the body to provide innervation in the breast. Next, neurons are challenging to culture, and there are no cell lines adequately representing the diversity of sensory neurons. Finally, sensory neurons are responsible for transporting several different types of signals to the brain, and there are many different subtypes of sensory neurons. The subtypes of sensory neurons, which innervate and interact with breast tumours, are unknown. To establish the tools for labelling and subtyping neurons that interact with breast cancer cells, we utilised two retrograde tracer's standards in neuroscience, wheat-germ agglutinin (WGA) and cholera toxin subunit B (CTB). In vitro, we employed primary sensory neurons isolated from mouse dorsal root ganglia, cultured in a custom-built microfluidic device DACIT, that mimics the anatomical compartmentalisation of the sensory neuron's soma and axons. In vivo, we utilised both syngeneic and transgenic mouse models of mammary carcinoma. We show that CTB and WGA trace different but overlapping sensory neuronal subpopulations: while WGA is more efficient in labelling CGRP+ neurons, CTB is superior in labelling the NF200+ neurons. Surprisingly, both tracers are also taken up by a significant population of breast cancer cells, both in vitro and in vivo. In summary, we have established methodologies for retrograde tracing of sensory neurons interacting with breast cancer cells. Our tools will be useful for future studies of breast tumour innervation, and development of therapies targeting breast cancer-associated neuron subpopulations of sensory neurons. Lay description: Breast cancer is an aggressive disease that affects both women and men throughout the world. While it has been reported that the increasing size of nerves in breast cancer correlates to bad prognosis in patients, the role of nerves, especially sensory nerves, in breast cancer progression, has remained largely understudied. Sensory nerves are responsible for delivering signals such as pain, mechanical forces (pressure, tension, stretch, touch) and temperature to the brain. The human body is densely innervated, and nerves extending into peripheral organs can be as long as a few meters. Nerve classification and function can be very complex, as they contain bundles of extensions (axons) originating in different neuronal bodies (soma). Maintaining neurons and growing axons in cell culture conditions in order to mimic innervation is technically challenging, as it involves multiple organs of the human body. Here, we focus on tracing sensory axons from the breast tumours back to the neuronal soma, located in the dorsal root ganglia, inside the spine. To do so, we are using two different 'retrograde' tracers, WGA and CTB, which are proteins with a natural ability to enter axons and travel in a retrograde fashion, arriving at the soma, even if it means to travel distances longer than a meter. Both tracers are fluorescently labelled, making them visible using high-resolution fluorescent microscopy. We show that both WGA and CTB can label sensory neurons in tumours, or in cell culture conditions. The two tracers differ in efficiency of tracing different sensory neurons subpopulations: while WGA is more efficient in tracing small C-fibres (CGRP-positive), CTB is more efficient in tracing A-fibres (NF200+) of sensory neurons. In summary, we have successfully established retrograde tracing techniques for sensory neurons towards studying and targeting breast cancer innervation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retrograde tracing of breast cancer-associated sensory neurons.\",\"authors\":\"Svetllana Kallogjerovic, Inés Velázquez-Quesada, Rutva Hadap, Bojana Gligorijevic\",\"doi\":\"10.1111/jmi.13340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is one of the leading causes of mortality among women. The tumour microenvironment, consisting of host cells and extracellular matrix, has been increasingly studied for its interplay with cancer cells, and the resulting effect on tumour progression. While the breast is one of the most innervated organs in the body, the role of neurons, and specifically sensory neurons, has been understudied, mostly for technical reasons. One of the reasons is the anatomy of sensory neurons: sensory neuron somas are located in the spine, and their axons can extend longer than a meter across the body to provide innervation in the breast. Next, neurons are challenging to culture, and there are no cell lines adequately representing the diversity of sensory neurons. Finally, sensory neurons are responsible for transporting several different types of signals to the brain, and there are many different subtypes of sensory neurons. The subtypes of sensory neurons, which innervate and interact with breast tumours, are unknown. To establish the tools for labelling and subtyping neurons that interact with breast cancer cells, we utilised two retrograde tracer's standards in neuroscience, wheat-germ agglutinin (WGA) and cholera toxin subunit B (CTB). In vitro, we employed primary sensory neurons isolated from mouse dorsal root ganglia, cultured in a custom-built microfluidic device DACIT, that mimics the anatomical compartmentalisation of the sensory neuron's soma and axons. In vivo, we utilised both syngeneic and transgenic mouse models of mammary carcinoma. We show that CTB and WGA trace different but overlapping sensory neuronal subpopulations: while WGA is more efficient in labelling CGRP+ neurons, CTB is superior in labelling the NF200+ neurons. Surprisingly, both tracers are also taken up by a significant population of breast cancer cells, both in vitro and in vivo. In summary, we have established methodologies for retrograde tracing of sensory neurons interacting with breast cancer cells. Our tools will be useful for future studies of breast tumour innervation, and development of therapies targeting breast cancer-associated neuron subpopulations of sensory neurons. Lay description: Breast cancer is an aggressive disease that affects both women and men throughout the world. While it has been reported that the increasing size of nerves in breast cancer correlates to bad prognosis in patients, the role of nerves, especially sensory nerves, in breast cancer progression, has remained largely understudied. Sensory nerves are responsible for delivering signals such as pain, mechanical forces (pressure, tension, stretch, touch) and temperature to the brain. The human body is densely innervated, and nerves extending into peripheral organs can be as long as a few meters. Nerve classification and function can be very complex, as they contain bundles of extensions (axons) originating in different neuronal bodies (soma). Maintaining neurons and growing axons in cell culture conditions in order to mimic innervation is technically challenging, as it involves multiple organs of the human body. Here, we focus on tracing sensory axons from the breast tumours back to the neuronal soma, located in the dorsal root ganglia, inside the spine. To do so, we are using two different 'retrograde' tracers, WGA and CTB, which are proteins with a natural ability to enter axons and travel in a retrograde fashion, arriving at the soma, even if it means to travel distances longer than a meter. Both tracers are fluorescently labelled, making them visible using high-resolution fluorescent microscopy. We show that both WGA and CTB can label sensory neurons in tumours, or in cell culture conditions. The two tracers differ in efficiency of tracing different sensory neurons subpopulations: while WGA is more efficient in tracing small C-fibres (CGRP-positive), CTB is more efficient in tracing A-fibres (NF200+) of sensory neurons. In summary, we have successfully established retrograde tracing techniques for sensory neurons towards studying and targeting breast cancer innervation.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.13340\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13340","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Retrograde tracing of breast cancer-associated sensory neurons.
Breast cancer is one of the leading causes of mortality among women. The tumour microenvironment, consisting of host cells and extracellular matrix, has been increasingly studied for its interplay with cancer cells, and the resulting effect on tumour progression. While the breast is one of the most innervated organs in the body, the role of neurons, and specifically sensory neurons, has been understudied, mostly for technical reasons. One of the reasons is the anatomy of sensory neurons: sensory neuron somas are located in the spine, and their axons can extend longer than a meter across the body to provide innervation in the breast. Next, neurons are challenging to culture, and there are no cell lines adequately representing the diversity of sensory neurons. Finally, sensory neurons are responsible for transporting several different types of signals to the brain, and there are many different subtypes of sensory neurons. The subtypes of sensory neurons, which innervate and interact with breast tumours, are unknown. To establish the tools for labelling and subtyping neurons that interact with breast cancer cells, we utilised two retrograde tracer's standards in neuroscience, wheat-germ agglutinin (WGA) and cholera toxin subunit B (CTB). In vitro, we employed primary sensory neurons isolated from mouse dorsal root ganglia, cultured in a custom-built microfluidic device DACIT, that mimics the anatomical compartmentalisation of the sensory neuron's soma and axons. In vivo, we utilised both syngeneic and transgenic mouse models of mammary carcinoma. We show that CTB and WGA trace different but overlapping sensory neuronal subpopulations: while WGA is more efficient in labelling CGRP+ neurons, CTB is superior in labelling the NF200+ neurons. Surprisingly, both tracers are also taken up by a significant population of breast cancer cells, both in vitro and in vivo. In summary, we have established methodologies for retrograde tracing of sensory neurons interacting with breast cancer cells. Our tools will be useful for future studies of breast tumour innervation, and development of therapies targeting breast cancer-associated neuron subpopulations of sensory neurons. Lay description: Breast cancer is an aggressive disease that affects both women and men throughout the world. While it has been reported that the increasing size of nerves in breast cancer correlates to bad prognosis in patients, the role of nerves, especially sensory nerves, in breast cancer progression, has remained largely understudied. Sensory nerves are responsible for delivering signals such as pain, mechanical forces (pressure, tension, stretch, touch) and temperature to the brain. The human body is densely innervated, and nerves extending into peripheral organs can be as long as a few meters. Nerve classification and function can be very complex, as they contain bundles of extensions (axons) originating in different neuronal bodies (soma). Maintaining neurons and growing axons in cell culture conditions in order to mimic innervation is technically challenging, as it involves multiple organs of the human body. Here, we focus on tracing sensory axons from the breast tumours back to the neuronal soma, located in the dorsal root ganglia, inside the spine. To do so, we are using two different 'retrograde' tracers, WGA and CTB, which are proteins with a natural ability to enter axons and travel in a retrograde fashion, arriving at the soma, even if it means to travel distances longer than a meter. Both tracers are fluorescently labelled, making them visible using high-resolution fluorescent microscopy. We show that both WGA and CTB can label sensory neurons in tumours, or in cell culture conditions. The two tracers differ in efficiency of tracing different sensory neurons subpopulations: while WGA is more efficient in tracing small C-fibres (CGRP-positive), CTB is more efficient in tracing A-fibres (NF200+) of sensory neurons. In summary, we have successfully established retrograde tracing techniques for sensory neurons towards studying and targeting breast cancer innervation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.