{"title":"边际结构量化模型的双稳健估计和敏感性分析。","authors":"Chao Cheng, Liangyuan Hu, Fan Li","doi":"10.1093/biomtc/ujae045","DOIUrl":null,"url":null,"abstract":"<p><p>The marginal structure quantile model (MSQM) provides a unique lens to understand the causal effect of a time-varying treatment on the full distribution of potential outcomes. Under the semiparametric framework, we derive the efficiency influence function for the MSQM, from which a new doubly robust estimator is proposed for point estimation and inference. We show that the doubly robust estimator is consistent if either of the models associated with treatment assignment or the potential outcome distributions is correctly specified, and is semiparametric efficient if both models are correct. To implement the doubly robust MSQM estimator, we propose to solve a smoothed estimating equation to facilitate efficient computation of the point and variance estimates. In addition, we develop a confounding function approach to investigate the sensitivity of several MSQM estimators when the sequential ignorability assumption is violated. Extensive simulations are conducted to examine the finite-sample performance characteristics of the proposed methods. We apply the proposed methods to the Yale New Haven Health System Electronic Health Record data to study the effect of antihypertensive medications to patients with severe hypertension and assess the robustness of the findings to unmeasured baseline and time-varying confounding.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doubly robust estimation and sensitivity analysis for marginal structural quantile models.\",\"authors\":\"Chao Cheng, Liangyuan Hu, Fan Li\",\"doi\":\"10.1093/biomtc/ujae045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The marginal structure quantile model (MSQM) provides a unique lens to understand the causal effect of a time-varying treatment on the full distribution of potential outcomes. Under the semiparametric framework, we derive the efficiency influence function for the MSQM, from which a new doubly robust estimator is proposed for point estimation and inference. We show that the doubly robust estimator is consistent if either of the models associated with treatment assignment or the potential outcome distributions is correctly specified, and is semiparametric efficient if both models are correct. To implement the doubly robust MSQM estimator, we propose to solve a smoothed estimating equation to facilitate efficient computation of the point and variance estimates. In addition, we develop a confounding function approach to investigate the sensitivity of several MSQM estimators when the sequential ignorability assumption is violated. Extensive simulations are conducted to examine the finite-sample performance characteristics of the proposed methods. We apply the proposed methods to the Yale New Haven Health System Electronic Health Record data to study the effect of antihypertensive medications to patients with severe hypertension and assess the robustness of the findings to unmeasured baseline and time-varying confounding.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae045\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Doubly robust estimation and sensitivity analysis for marginal structural quantile models.
The marginal structure quantile model (MSQM) provides a unique lens to understand the causal effect of a time-varying treatment on the full distribution of potential outcomes. Under the semiparametric framework, we derive the efficiency influence function for the MSQM, from which a new doubly robust estimator is proposed for point estimation and inference. We show that the doubly robust estimator is consistent if either of the models associated with treatment assignment or the potential outcome distributions is correctly specified, and is semiparametric efficient if both models are correct. To implement the doubly robust MSQM estimator, we propose to solve a smoothed estimating equation to facilitate efficient computation of the point and variance estimates. In addition, we develop a confounding function approach to investigate the sensitivity of several MSQM estimators when the sequential ignorability assumption is violated. Extensive simulations are conducted to examine the finite-sample performance characteristics of the proposed methods. We apply the proposed methods to the Yale New Haven Health System Electronic Health Record data to study the effect of antihypertensive medications to patients with severe hypertension and assess the robustness of the findings to unmeasured baseline and time-varying confounding.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.