{"title":"在6-OHDA诱导的帕金森病模型中,A2AR拮抗剂触发了AMPK/m-TOR自噬途径,从而逆转了钙依赖性细胞损伤。","authors":"Tuithung Sophronea, Saurabh Agrawal, Namrata Kumari, Jyoti Mishra, Vaishali Walecha, Pratibha Mehta Luthra","doi":"10.1016/j.neuint.2024.105793","DOIUrl":null,"url":null,"abstract":"<div><p>Calcium dyshomeostasis, oxidative stress, autophagy and apoptosis are the pathogenesis of selective dopaminergic neuronal loss in Parkinson's disease (PD). Earlier, we reported that A<sub>2A</sub> R modulates IP<sub>3</sub>-dependent intracellular Ca<sup>2+</sup> signalling via PKA. Moreover, A<sub>2A</sub> R antagonist has been reported to reduce oxidative stress and apoptosis in PD models, however intracellular Ca<sup>2+</sup> ([Ca<sup>2+</sup>]<sub>i</sub>) dependent autophagy regulation in the 6-OHDA model of PD has not been explored. In the present study, we investigated the A<sub>2A</sub> R antagonists mediated neuroprotective effects in 6-OHDA-induced primary midbrain neuronal (PMN) cells and unilateral lesioned rat model of PD. 6-OHDA-induced oxidative stress (ROS and superoxide) and [Ca<sup>2+</sup>]<sub>i</sub> was measured using Fluo4AM, DCFDA and DHE dye respectively. Furthermore, autophagy was assessed by Western blot of p-m-TOR/mTOR, p-AMPK/AMPK, LC3I/II, Beclin and β-actin. Apoptosis was measured by Annexin V-APC-PI detection and Western blot of Bcl<sub>2</sub>, Bax, caspase3 and β-actin. Dopamine levels were measured by Dopamine ELISA kit and Western blot of tyrosine hydroxylase. Our results suggest that 6-OHDA-induced PMN cell death occurred due to the interruption of [Ca<sup>2+</sup>]<sub>i</sub> homeostasis, accompanied by activation of autophagy and apoptosis. A<sub>2A</sub> R antagonists prevented 6-OHDA-induced neuronal cell death by decreasing [Ca<sup>2+</sup>]<sub>i</sub> overload and oxidative stress. In addition, we found that A<sub>2A</sub> R antagonists upregulated mTOR phosphorylation and downregulated AMPK phosphorylation thereby reducing autophagy and apoptosis both in 6-OHDA induced PMN cells and 6-OHDA unilateral lesioned rat model. In conclusion, A<sub>2A</sub> R antagonists alleviated 6-OHDA toxicity by modulating [Ca<sup>2+</sup>]<sub>i</sub> signalling to inhibit autophagy mediated by the AMPK/mTOR pathway.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"178 ","pages":"Article 105793"},"PeriodicalIF":4.4000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A2AR antagonists triggered the AMPK/m-TOR autophagic pathway to reverse the calcium-dependent cell damage in 6-OHDA induced model of PD\",\"authors\":\"Tuithung Sophronea, Saurabh Agrawal, Namrata Kumari, Jyoti Mishra, Vaishali Walecha, Pratibha Mehta Luthra\",\"doi\":\"10.1016/j.neuint.2024.105793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Calcium dyshomeostasis, oxidative stress, autophagy and apoptosis are the pathogenesis of selective dopaminergic neuronal loss in Parkinson's disease (PD). Earlier, we reported that A<sub>2A</sub> R modulates IP<sub>3</sub>-dependent intracellular Ca<sup>2+</sup> signalling via PKA. Moreover, A<sub>2A</sub> R antagonist has been reported to reduce oxidative stress and apoptosis in PD models, however intracellular Ca<sup>2+</sup> ([Ca<sup>2+</sup>]<sub>i</sub>) dependent autophagy regulation in the 6-OHDA model of PD has not been explored. In the present study, we investigated the A<sub>2A</sub> R antagonists mediated neuroprotective effects in 6-OHDA-induced primary midbrain neuronal (PMN) cells and unilateral lesioned rat model of PD. 6-OHDA-induced oxidative stress (ROS and superoxide) and [Ca<sup>2+</sup>]<sub>i</sub> was measured using Fluo4AM, DCFDA and DHE dye respectively. Furthermore, autophagy was assessed by Western blot of p-m-TOR/mTOR, p-AMPK/AMPK, LC3I/II, Beclin and β-actin. Apoptosis was measured by Annexin V-APC-PI detection and Western blot of Bcl<sub>2</sub>, Bax, caspase3 and β-actin. Dopamine levels were measured by Dopamine ELISA kit and Western blot of tyrosine hydroxylase. Our results suggest that 6-OHDA-induced PMN cell death occurred due to the interruption of [Ca<sup>2+</sup>]<sub>i</sub> homeostasis, accompanied by activation of autophagy and apoptosis. A<sub>2A</sub> R antagonists prevented 6-OHDA-induced neuronal cell death by decreasing [Ca<sup>2+</sup>]<sub>i</sub> overload and oxidative stress. In addition, we found that A<sub>2A</sub> R antagonists upregulated mTOR phosphorylation and downregulated AMPK phosphorylation thereby reducing autophagy and apoptosis both in 6-OHDA induced PMN cells and 6-OHDA unilateral lesioned rat model. In conclusion, A<sub>2A</sub> R antagonists alleviated 6-OHDA toxicity by modulating [Ca<sup>2+</sup>]<sub>i</sub> signalling to inhibit autophagy mediated by the AMPK/mTOR pathway.</p></div>\",\"PeriodicalId\":398,\"journal\":{\"name\":\"Neurochemistry international\",\"volume\":\"178 \",\"pages\":\"Article 105793\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemistry international\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0197018624001207\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018624001207","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
钙失衡、氧化应激、自噬和细胞凋亡是帕金森病选择性多巴胺神经元缺失的发病机制。早些时候,我们报道了 A2A R 通过 PKA 调节 IP3 依赖性细胞内 Ca2+ 信号。此外,有报道称 A2A R 拮抗剂可减少帕金森病模型中的氧化应激和细胞凋亡,但在 6-OHDA 帕金森病模型中,细胞内 Ca2+ ([Ca2+]i)依赖的自噬调节尚未得到探讨。在本研究中,我们研究了 A2A R 拮抗剂在 6-OHDA 诱导的原发性中脑神经元(PMN)细胞和单侧病变的 PD 大鼠模型中介导的神经保护作用。使用Fluo4AM、DCFDA和DHE染料分别测量了6-OHDA诱导的氧化应激(ROS和超氧化物)和[Ca2+]i。此外,还通过对p-m-TOR/mTOR、p-AMPK/AMPK、LC3I/II、Beclin和β-actin进行Western印迹来评估自噬。细胞凋亡通过 Annexin V-APC-PI 检测和 Bcl2、Bax、caspase3 和 β-actin 的 Western 印迹进行测定。多巴胺水平通过多巴胺ELISA试剂盒和酪氨酸羟化酶Western印迹检测。我们的研究结果表明,6-OHDA诱导的PMN细胞死亡是由于[Ca2+]i平衡被破坏,同时伴有自噬和细胞凋亡的激活。A2A R拮抗剂通过降低[Ca2+]i过载和氧化应激防止了6-OHDA诱导的神经元细胞死亡。此外,我们还发现,在 6-OHDA 诱导的 PMN 细胞和 6-OHDA 单侧病变大鼠模型中,A2A R 拮抗剂可上调 mTOR 磷酸化,下调 AMPK 磷酸化,从而减少自噬和细胞凋亡。总之,A2A R拮抗剂通过调节[Ca2+]i信号来抑制AMPK/mTOR通路介导的自噬,从而减轻了6-OHDA的毒性。
A2AR antagonists triggered the AMPK/m-TOR autophagic pathway to reverse the calcium-dependent cell damage in 6-OHDA induced model of PD
Calcium dyshomeostasis, oxidative stress, autophagy and apoptosis are the pathogenesis of selective dopaminergic neuronal loss in Parkinson's disease (PD). Earlier, we reported that A2A R modulates IP3-dependent intracellular Ca2+ signalling via PKA. Moreover, A2A R antagonist has been reported to reduce oxidative stress and apoptosis in PD models, however intracellular Ca2+ ([Ca2+]i) dependent autophagy regulation in the 6-OHDA model of PD has not been explored. In the present study, we investigated the A2A R antagonists mediated neuroprotective effects in 6-OHDA-induced primary midbrain neuronal (PMN) cells and unilateral lesioned rat model of PD. 6-OHDA-induced oxidative stress (ROS and superoxide) and [Ca2+]i was measured using Fluo4AM, DCFDA and DHE dye respectively. Furthermore, autophagy was assessed by Western blot of p-m-TOR/mTOR, p-AMPK/AMPK, LC3I/II, Beclin and β-actin. Apoptosis was measured by Annexin V-APC-PI detection and Western blot of Bcl2, Bax, caspase3 and β-actin. Dopamine levels were measured by Dopamine ELISA kit and Western blot of tyrosine hydroxylase. Our results suggest that 6-OHDA-induced PMN cell death occurred due to the interruption of [Ca2+]i homeostasis, accompanied by activation of autophagy and apoptosis. A2A R antagonists prevented 6-OHDA-induced neuronal cell death by decreasing [Ca2+]i overload and oxidative stress. In addition, we found that A2A R antagonists upregulated mTOR phosphorylation and downregulated AMPK phosphorylation thereby reducing autophagy and apoptosis both in 6-OHDA induced PMN cells and 6-OHDA unilateral lesioned rat model. In conclusion, A2A R antagonists alleviated 6-OHDA toxicity by modulating [Ca2+]i signalling to inhibit autophagy mediated by the AMPK/mTOR pathway.
期刊介绍:
Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.