Xiaoyue Gao, Qiyuan Zhuang, Yun Li, Guochao Li, Zheng Huang, Shenzhi Chen, Shaoxing Sun, Hui Yang, Lan Jiang, Ying Mao
{"title":"单细胞染色质可及性分析揭示髓母细胞瘤亚组特异性 TF-NTR 调控回路","authors":"Xiaoyue Gao, Qiyuan Zhuang, Yun Li, Guochao Li, Zheng Huang, Shenzhi Chen, Shaoxing Sun, Hui Yang, Lan Jiang, Ying Mao","doi":"10.1002/advs.202309554","DOIUrl":null,"url":null,"abstract":"<p>Medulloblastoma (MB) stands as one of the prevalent malignant brain tumors among pediatric patients. Despite its prevalence, the intricate interplay between the regulatory program driving malignancy in MB cells and their interactions with the microenvironment remains insufficiently understood. Leveraging the capabilities of single-cell Assay for Transposase-Accessible Chromatin sequencing (scATAC-seq), the chromatin accessibility landscape is unveiled across 59,015 distinct MB cells. This expansive dataset encompasses cells belonging to discrete molecular subgroups, namely SHH, WNT, Group3, and Group4. Within these chromatin accessibility profiles, specific regulatory elements tied to individual subgroups are uncovered, shedding light on the distinct activities of transcription factors (TFs) that likely orchestrate the tumorigenesis process. Moreover, it is found that certain neurotransmitter receptors (NTRs) are subgroup-specific and can predict MB subgroup classification when combined with their associated transcription factors. Notably, targeting essential NTRs within tumors influences both the in vitro sphere-forming capability and the in vivo tumorigenic capacity of MB cells. These findings collectively provide fresh insights into comprehending the regulatory networks and cellular dynamics within MBs. Furthermore, the significance of the TF-NTR regulatory circuits is underscored as prospective biomarkers and viable therapeutic targets.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"11 30","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321678/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-Cell Chromatin Accessibility Analysis Reveals Subgroup-Specific TF-NTR Regulatory Circuits in Medulloblastoma\",\"authors\":\"Xiaoyue Gao, Qiyuan Zhuang, Yun Li, Guochao Li, Zheng Huang, Shenzhi Chen, Shaoxing Sun, Hui Yang, Lan Jiang, Ying Mao\",\"doi\":\"10.1002/advs.202309554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Medulloblastoma (MB) stands as one of the prevalent malignant brain tumors among pediatric patients. Despite its prevalence, the intricate interplay between the regulatory program driving malignancy in MB cells and their interactions with the microenvironment remains insufficiently understood. Leveraging the capabilities of single-cell Assay for Transposase-Accessible Chromatin sequencing (scATAC-seq), the chromatin accessibility landscape is unveiled across 59,015 distinct MB cells. This expansive dataset encompasses cells belonging to discrete molecular subgroups, namely SHH, WNT, Group3, and Group4. Within these chromatin accessibility profiles, specific regulatory elements tied to individual subgroups are uncovered, shedding light on the distinct activities of transcription factors (TFs) that likely orchestrate the tumorigenesis process. Moreover, it is found that certain neurotransmitter receptors (NTRs) are subgroup-specific and can predict MB subgroup classification when combined with their associated transcription factors. Notably, targeting essential NTRs within tumors influences both the in vitro sphere-forming capability and the in vivo tumorigenic capacity of MB cells. These findings collectively provide fresh insights into comprehending the regulatory networks and cellular dynamics within MBs. Furthermore, the significance of the TF-NTR regulatory circuits is underscored as prospective biomarkers and viable therapeutic targets.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"11 30\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321678/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202309554\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202309554","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Medulloblastoma (MB) stands as one of the prevalent malignant brain tumors among pediatric patients. Despite its prevalence, the intricate interplay between the regulatory program driving malignancy in MB cells and their interactions with the microenvironment remains insufficiently understood. Leveraging the capabilities of single-cell Assay for Transposase-Accessible Chromatin sequencing (scATAC-seq), the chromatin accessibility landscape is unveiled across 59,015 distinct MB cells. This expansive dataset encompasses cells belonging to discrete molecular subgroups, namely SHH, WNT, Group3, and Group4. Within these chromatin accessibility profiles, specific regulatory elements tied to individual subgroups are uncovered, shedding light on the distinct activities of transcription factors (TFs) that likely orchestrate the tumorigenesis process. Moreover, it is found that certain neurotransmitter receptors (NTRs) are subgroup-specific and can predict MB subgroup classification when combined with their associated transcription factors. Notably, targeting essential NTRs within tumors influences both the in vitro sphere-forming capability and the in vivo tumorigenic capacity of MB cells. These findings collectively provide fresh insights into comprehending the regulatory networks and cellular dynamics within MBs. Furthermore, the significance of the TF-NTR regulatory circuits is underscored as prospective biomarkers and viable therapeutic targets.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.