{"title":"衰老过程中皮层微结构的早期变化与阿尔茨海默病的病理变化有关。","authors":"","doi":"10.1016/j.bpsc.2024.05.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Early identification of Alzheimer’s disease (AD) risk is critical for improving treatment success. Cortical thickness is a macrostructural measure used to assess neurodegeneration in AD. However, cortical microstructural changes appear to precede macrostructural atrophy and may improve early risk identification. Currently, whether cortical microstructural changes in aging are linked to vulnerability to AD pathophysiology remains unclear in nonclinical populations, who are precisely the target for early risk identification.</div></div><div><h3>Methods</h3><div>In 194 adults, we calculated magnetic resonance imaging–derived maps of changes in cortical mean diffusivity (microstructure) and cortical thickness (macrostructure) over 5 to 6 years (mean age: time 1 = 61.82 years; time 2 = 67.48 years). Episodic memory was assessed using 3 well-established tests. We obtained positron emission tomography–derived maps of AD pathology deposition (amyloid-β, tau) and neurotransmitter receptors (cholinergic, glutamatergic) implicated in AD pathophysiology. Spatial correlational analyses were used to compare pattern similarity among maps.</div></div><div><h3>Results</h3><div>Spatial patterns of cortical macrostructural changes resembled patterns of cortical organization sensitive to age-related processes (<em>r</em> = −0.31, <em>p</em> < .05), whereas microstructural changes resembled the patterns of tau deposition in AD (<em>r</em> = 0.39, <em>p</em> = .038). Individuals with patterns of microstructural changes that more closely resembled stereotypical tau deposition exhibited greater memory decline (β = 0.22, <em>p</em> = .029). Microstructural changes and AD pathology deposition were enriched in areas with greater densities of cholinergic and glutamatergic receptors (<em>p</em>s < .05).</div></div><div><h3>Conclusions</h3><div>Patterns of cortical microstructural changes were more AD-like than patterns of macrostructural changes, which appeared to reflect more general aging processes. Microstructural changes may better inform early risk prediction efforts as a sensitive measure of vulnerability to pathological processes prior to overt atrophy and cognitive decline.</div></div>","PeriodicalId":54231,"journal":{"name":"Biological Psychiatry-Cognitive Neuroscience and Neuroimaging","volume":"9 10","pages":"Pages 975-985"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early Cortical Microstructural Changes in Aging Are Linked to Vulnerability to Alzheimer’s Disease Pathology\",\"authors\":\"\",\"doi\":\"10.1016/j.bpsc.2024.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Early identification of Alzheimer’s disease (AD) risk is critical for improving treatment success. Cortical thickness is a macrostructural measure used to assess neurodegeneration in AD. However, cortical microstructural changes appear to precede macrostructural atrophy and may improve early risk identification. Currently, whether cortical microstructural changes in aging are linked to vulnerability to AD pathophysiology remains unclear in nonclinical populations, who are precisely the target for early risk identification.</div></div><div><h3>Methods</h3><div>In 194 adults, we calculated magnetic resonance imaging–derived maps of changes in cortical mean diffusivity (microstructure) and cortical thickness (macrostructure) over 5 to 6 years (mean age: time 1 = 61.82 years; time 2 = 67.48 years). Episodic memory was assessed using 3 well-established tests. We obtained positron emission tomography–derived maps of AD pathology deposition (amyloid-β, tau) and neurotransmitter receptors (cholinergic, glutamatergic) implicated in AD pathophysiology. Spatial correlational analyses were used to compare pattern similarity among maps.</div></div><div><h3>Results</h3><div>Spatial patterns of cortical macrostructural changes resembled patterns of cortical organization sensitive to age-related processes (<em>r</em> = −0.31, <em>p</em> < .05), whereas microstructural changes resembled the patterns of tau deposition in AD (<em>r</em> = 0.39, <em>p</em> = .038). Individuals with patterns of microstructural changes that more closely resembled stereotypical tau deposition exhibited greater memory decline (β = 0.22, <em>p</em> = .029). Microstructural changes and AD pathology deposition were enriched in areas with greater densities of cholinergic and glutamatergic receptors (<em>p</em>s < .05).</div></div><div><h3>Conclusions</h3><div>Patterns of cortical microstructural changes were more AD-like than patterns of macrostructural changes, which appeared to reflect more general aging processes. Microstructural changes may better inform early risk prediction efforts as a sensitive measure of vulnerability to pathological processes prior to overt atrophy and cognitive decline.</div></div>\",\"PeriodicalId\":54231,\"journal\":{\"name\":\"Biological Psychiatry-Cognitive Neuroscience and Neuroimaging\",\"volume\":\"9 10\",\"pages\":\"Pages 975-985\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Psychiatry-Cognitive Neuroscience and Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451902224001587\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry-Cognitive Neuroscience and Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451902224001587","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Early Cortical Microstructural Changes in Aging Are Linked to Vulnerability to Alzheimer’s Disease Pathology
Background
Early identification of Alzheimer’s disease (AD) risk is critical for improving treatment success. Cortical thickness is a macrostructural measure used to assess neurodegeneration in AD. However, cortical microstructural changes appear to precede macrostructural atrophy and may improve early risk identification. Currently, whether cortical microstructural changes in aging are linked to vulnerability to AD pathophysiology remains unclear in nonclinical populations, who are precisely the target for early risk identification.
Methods
In 194 adults, we calculated magnetic resonance imaging–derived maps of changes in cortical mean diffusivity (microstructure) and cortical thickness (macrostructure) over 5 to 6 years (mean age: time 1 = 61.82 years; time 2 = 67.48 years). Episodic memory was assessed using 3 well-established tests. We obtained positron emission tomography–derived maps of AD pathology deposition (amyloid-β, tau) and neurotransmitter receptors (cholinergic, glutamatergic) implicated in AD pathophysiology. Spatial correlational analyses were used to compare pattern similarity among maps.
Results
Spatial patterns of cortical macrostructural changes resembled patterns of cortical organization sensitive to age-related processes (r = −0.31, p < .05), whereas microstructural changes resembled the patterns of tau deposition in AD (r = 0.39, p = .038). Individuals with patterns of microstructural changes that more closely resembled stereotypical tau deposition exhibited greater memory decline (β = 0.22, p = .029). Microstructural changes and AD pathology deposition were enriched in areas with greater densities of cholinergic and glutamatergic receptors (ps < .05).
Conclusions
Patterns of cortical microstructural changes were more AD-like than patterns of macrostructural changes, which appeared to reflect more general aging processes. Microstructural changes may better inform early risk prediction efforts as a sensitive measure of vulnerability to pathological processes prior to overt atrophy and cognitive decline.
期刊介绍:
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging is an official journal of the Society for Biological Psychiatry, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms, and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal focuses on studies using the tools and constructs of cognitive neuroscience, including the full range of non-invasive neuroimaging and human extra- and intracranial physiological recording methodologies. It publishes both basic and clinical studies, including those that incorporate genetic data, pharmacological challenges, and computational modeling approaches. The journal publishes novel results of original research which represent an important new lead or significant impact on the field. Reviews and commentaries that focus on topics of current research and interest are also encouraged.