{"title":"利用 Dempster-Shafer 理论对蠕动心脏泵送进行混合不确定性分析。","authors":"Yanyan He, Nicholas A Battista, Lindsay D Waldrop","doi":"10.1007/s00285-024-02116-6","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we introduce the numerical strategy for mixed uncertainty propagation based on probability and Dempster-Shafer theories, and apply it to the computational model of peristalsis in a heart-pumping system. Specifically, the stochastic uncertainty in the system is represented with random variables while epistemic uncertainty is represented using non-probabilistic uncertain variables with belief functions. The mixed uncertainty is propagated through the system, resulting in the uncertainty in the chosen quantities of interest (QoI, such as flow volume, cost of transport and work). With the introduced numerical method, the uncertainty in the statistics of QoIs will be represented using belief functions. With three representative probability distributions consistent with the belief structure, global sensitivity analysis has also been implemented to identify important uncertain factors and the results have been compared between different peristalsis models. To reduce the computational cost, physics constrained generalized polynomial chaos method is adopted to construct cheaper surrogates as approximations for the full simulation.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"89 1","pages":"13"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed uncertainty analysis on pumping by peristaltic hearts using Dempster-Shafer theory.\",\"authors\":\"Yanyan He, Nicholas A Battista, Lindsay D Waldrop\",\"doi\":\"10.1007/s00285-024-02116-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we introduce the numerical strategy for mixed uncertainty propagation based on probability and Dempster-Shafer theories, and apply it to the computational model of peristalsis in a heart-pumping system. Specifically, the stochastic uncertainty in the system is represented with random variables while epistemic uncertainty is represented using non-probabilistic uncertain variables with belief functions. The mixed uncertainty is propagated through the system, resulting in the uncertainty in the chosen quantities of interest (QoI, such as flow volume, cost of transport and work). With the introduced numerical method, the uncertainty in the statistics of QoIs will be represented using belief functions. With three representative probability distributions consistent with the belief structure, global sensitivity analysis has also been implemented to identify important uncertain factors and the results have been compared between different peristalsis models. To reduce the computational cost, physics constrained generalized polynomial chaos method is adopted to construct cheaper surrogates as approximations for the full simulation.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"89 1\",\"pages\":\"13\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02116-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02116-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Mixed uncertainty analysis on pumping by peristaltic hearts using Dempster-Shafer theory.
In this paper, we introduce the numerical strategy for mixed uncertainty propagation based on probability and Dempster-Shafer theories, and apply it to the computational model of peristalsis in a heart-pumping system. Specifically, the stochastic uncertainty in the system is represented with random variables while epistemic uncertainty is represented using non-probabilistic uncertain variables with belief functions. The mixed uncertainty is propagated through the system, resulting in the uncertainty in the chosen quantities of interest (QoI, such as flow volume, cost of transport and work). With the introduced numerical method, the uncertainty in the statistics of QoIs will be represented using belief functions. With three representative probability distributions consistent with the belief structure, global sensitivity analysis has also been implemented to identify important uncertain factors and the results have been compared between different peristalsis models. To reduce the computational cost, physics constrained generalized polynomial chaos method is adopted to construct cheaper surrogates as approximations for the full simulation.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.