{"title":"阿托品通过调节成年小鼠的氧化还原稳态促进睾丸功能","authors":"Shashank Tripathi, Shweta Maurya, Ajit Singh","doi":"10.1007/s12020-024-03921-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Adropin is an emerging metabolic hormone that has a role in regulating energy homeostasis. The present study aimed to explore the impact of adropin on redox homeostasis and its possible role in testicular functions in adult mouse testis.</p><p><strong>Methods: </strong>Western blot, flow-cytometry, and TUNEL assay were performed to explore the impact of intra-testicular treatment of adropin (0.5 μg/testis) on testicular functions of adult mice. Hormonal assay was done by ELISA. Further, antioxidant enzyme activities were measured.</p><p><strong>Results: </strong>Adropin treatment significantly increased the sperm count and testicular testosterone by increasing the expression of GPR19 and steroidogenic proteins. Also, adropin treatment reduced the oxidative/nitrosative stress by facilitating the translocation of NRF2 and inhibiting NF-κB into the nucleus of germ cells. Enhanced nuclear translocation of NRF2 leads to elevated biosynthesis of antioxidant enzymes, evident by increased HO-1, SOD, and catalase activity that ultimately resulted into declined LPO levels in adropin-treated mice testes. Furthermore, adropin decreased nuclear translocation of NF-κB in germ cells, that resulted into decreased NO production leading to decreased nitrosative stress. Adropin/GPR19 signaling significantly increased its differentiation, proliferation, and survival of germ cells by elevating the expression of PCNA and declining caspase 3, cleaved caspase 3 expression, Bax/Bcl2 ratio, and TUNEL-positive cells. FACS analysis revealed that adropin treatment enhances overall turnover of testicular cells leading to rise in production of advanced germ cells, notably spermatids.</p><p><strong>Conclusion: </strong>The present study indicated that adropin improves testicular steroidogenesis, spermatogenesis via modulating redox potential and could be a promising target for treating testicular dysfunctions.</p>","PeriodicalId":49211,"journal":{"name":"Endocrine","volume":" ","pages":"428-440"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adropin promotes testicular functions by modulating redox homeostasis in adult mouse.\",\"authors\":\"Shashank Tripathi, Shweta Maurya, Ajit Singh\",\"doi\":\"10.1007/s12020-024-03921-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Adropin is an emerging metabolic hormone that has a role in regulating energy homeostasis. The present study aimed to explore the impact of adropin on redox homeostasis and its possible role in testicular functions in adult mouse testis.</p><p><strong>Methods: </strong>Western blot, flow-cytometry, and TUNEL assay were performed to explore the impact of intra-testicular treatment of adropin (0.5 μg/testis) on testicular functions of adult mice. Hormonal assay was done by ELISA. Further, antioxidant enzyme activities were measured.</p><p><strong>Results: </strong>Adropin treatment significantly increased the sperm count and testicular testosterone by increasing the expression of GPR19 and steroidogenic proteins. Also, adropin treatment reduced the oxidative/nitrosative stress by facilitating the translocation of NRF2 and inhibiting NF-κB into the nucleus of germ cells. Enhanced nuclear translocation of NRF2 leads to elevated biosynthesis of antioxidant enzymes, evident by increased HO-1, SOD, and catalase activity that ultimately resulted into declined LPO levels in adropin-treated mice testes. Furthermore, adropin decreased nuclear translocation of NF-κB in germ cells, that resulted into decreased NO production leading to decreased nitrosative stress. Adropin/GPR19 signaling significantly increased its differentiation, proliferation, and survival of germ cells by elevating the expression of PCNA and declining caspase 3, cleaved caspase 3 expression, Bax/Bcl2 ratio, and TUNEL-positive cells. FACS analysis revealed that adropin treatment enhances overall turnover of testicular cells leading to rise in production of advanced germ cells, notably spermatids.</p><p><strong>Conclusion: </strong>The present study indicated that adropin improves testicular steroidogenesis, spermatogenesis via modulating redox potential and could be a promising target for treating testicular dysfunctions.</p>\",\"PeriodicalId\":49211,\"journal\":{\"name\":\"Endocrine\",\"volume\":\" \",\"pages\":\"428-440\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12020-024-03921-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12020-024-03921-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Adropin promotes testicular functions by modulating redox homeostasis in adult mouse.
Purpose: Adropin is an emerging metabolic hormone that has a role in regulating energy homeostasis. The present study aimed to explore the impact of adropin on redox homeostasis and its possible role in testicular functions in adult mouse testis.
Methods: Western blot, flow-cytometry, and TUNEL assay were performed to explore the impact of intra-testicular treatment of adropin (0.5 μg/testis) on testicular functions of adult mice. Hormonal assay was done by ELISA. Further, antioxidant enzyme activities were measured.
Results: Adropin treatment significantly increased the sperm count and testicular testosterone by increasing the expression of GPR19 and steroidogenic proteins. Also, adropin treatment reduced the oxidative/nitrosative stress by facilitating the translocation of NRF2 and inhibiting NF-κB into the nucleus of germ cells. Enhanced nuclear translocation of NRF2 leads to elevated biosynthesis of antioxidant enzymes, evident by increased HO-1, SOD, and catalase activity that ultimately resulted into declined LPO levels in adropin-treated mice testes. Furthermore, adropin decreased nuclear translocation of NF-κB in germ cells, that resulted into decreased NO production leading to decreased nitrosative stress. Adropin/GPR19 signaling significantly increased its differentiation, proliferation, and survival of germ cells by elevating the expression of PCNA and declining caspase 3, cleaved caspase 3 expression, Bax/Bcl2 ratio, and TUNEL-positive cells. FACS analysis revealed that adropin treatment enhances overall turnover of testicular cells leading to rise in production of advanced germ cells, notably spermatids.
Conclusion: The present study indicated that adropin improves testicular steroidogenesis, spermatogenesis via modulating redox potential and could be a promising target for treating testicular dysfunctions.
期刊介绍:
Well-established as a major journal in today’s rapidly advancing experimental and clinical research areas, Endocrine publishes original articles devoted to basic (including molecular, cellular and physiological studies), translational and clinical research in all the different fields of endocrinology and metabolism. Articles will be accepted based on peer-reviews, priority, and editorial decision. Invited reviews, mini-reviews and viewpoints on relevant pathophysiological and clinical topics, as well as Editorials on articles appearing in the Journal, are published. Unsolicited Editorials will be evaluated by the editorial team. Outcomes of scientific meetings, as well as guidelines and position statements, may be submitted. The Journal also considers special feature articles in the field of endocrine genetics and epigenetics, as well as articles devoted to novel methods and techniques in endocrinology.
Endocrine covers controversial, clinical endocrine issues. Meta-analyses on endocrine and metabolic topics are also accepted. Descriptions of single clinical cases and/or small patients studies are not published unless of exceptional interest. However, reports of novel imaging studies and endocrine side effects in single patients may be considered. Research letters and letters to the editor related or unrelated to recently published articles can be submitted.
Endocrine covers leading topics in endocrinology such as neuroendocrinology, pituitary and hypothalamic peptides, thyroid physiological and clinical aspects, bone and mineral metabolism and osteoporosis, obesity, lipid and energy metabolism and food intake control, insulin, Type 1 and Type 2 diabetes, hormones of male and female reproduction, adrenal diseases pediatric and geriatric endocrinology, endocrine hypertension and endocrine oncology.