TNFAIP1 通过 LEENE/FoxO1/ABCA1 通路促进巨噬细胞脂质积累并加速动脉粥样硬化的发展。

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of physiology and biochemistry Pub Date : 2024-08-01 Epub Date: 2024-06-15 DOI:10.1007/s13105-024-01018-x
Can Xu, Jun Meng, Xiao-Hua Yu, Ru-Jing Wang, Mei-Ling Li, Shan-Hui Yin, Gang Wang
{"title":"TNFAIP1 通过 LEENE/FoxO1/ABCA1 通路促进巨噬细胞脂质积累并加速动脉粥样硬化的发展。","authors":"Can Xu, Jun Meng, Xiao-Hua Yu, Ru-Jing Wang, Mei-Ling Li, Shan-Hui Yin, Gang Wang","doi":"10.1007/s13105-024-01018-x","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophage lipid accumulation is a critical contributor to foam cell formation and atherosclerosis. Tumor necrosis factor-α-induced protein 1 (TNFAIP1) is closely associated with cardiovascular disease. However, its role and molecular mechanisms in atherogenesis remain unclear. TNFAIP1 was knocked down in THP-1 macrophage-derived foam cells and apolipoprotein-deficient (apoE<sup>-/-</sup>) mice using lentiviral vector. The expression of lncRNA enhancing endothelial nitric oxide synthase expression (LEENE), Forkhead box O1 (FoxO1) and ATP binding cassette transporter A1 (ABCA1) was evaluated by qRT-PCR and/or western blot. Lipid accumulation in macrophage was assessed by high-performance liquid chromatography and Oil red O staining. RNA immunoprecipitation and RNA pull-down assay were performed to verify the interaction between LEENE and FoxO1 protein. Atherosclerotic lesions were analyzed using HE, Oil red O and Masson staining. Our results showed that TNFAIP1 was significantly increased in THP-1 macrophages loaded with oxidized low-density lipoprotein. Knockdown of TNFAIP1 enhanced LEENE expression, promoted the direct interaction of LEENE with FoxO1 protein, stimulated FoxO1 protein degradation through the proteasome pathway, induced ABCA1 transcription, and finally suppressed lipid accumulation in THP-1 macrophage-derived foam cells. TNFAIP1 knockdown also up-regulated ABCA1 expression, improved plasma lipid profiles, enhanced the efficiency of reverse cholesterol transport and attenuated lesion area in apoE<sup>-/-</sup> mice. Taken together, these results provide the first direct evidence that TNFAIP1 aggravates atherosclerosis by promoting macrophage lipid accumulation via the LEENE/FoxO1/ABCA1 signaling pathway. TNFAIP1 may represent a promising therapeutic target for atherosclerotic cardiovascular disease.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":"523-539"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TNFAIP1 promotes macrophage lipid accumulation and accelerates the development of atherosclerosis through the LEENE/FoxO1/ABCA1 pathway.\",\"authors\":\"Can Xu, Jun Meng, Xiao-Hua Yu, Ru-Jing Wang, Mei-Ling Li, Shan-Hui Yin, Gang Wang\",\"doi\":\"10.1007/s13105-024-01018-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrophage lipid accumulation is a critical contributor to foam cell formation and atherosclerosis. Tumor necrosis factor-α-induced protein 1 (TNFAIP1) is closely associated with cardiovascular disease. However, its role and molecular mechanisms in atherogenesis remain unclear. TNFAIP1 was knocked down in THP-1 macrophage-derived foam cells and apolipoprotein-deficient (apoE<sup>-/-</sup>) mice using lentiviral vector. The expression of lncRNA enhancing endothelial nitric oxide synthase expression (LEENE), Forkhead box O1 (FoxO1) and ATP binding cassette transporter A1 (ABCA1) was evaluated by qRT-PCR and/or western blot. Lipid accumulation in macrophage was assessed by high-performance liquid chromatography and Oil red O staining. RNA immunoprecipitation and RNA pull-down assay were performed to verify the interaction between LEENE and FoxO1 protein. Atherosclerotic lesions were analyzed using HE, Oil red O and Masson staining. Our results showed that TNFAIP1 was significantly increased in THP-1 macrophages loaded with oxidized low-density lipoprotein. Knockdown of TNFAIP1 enhanced LEENE expression, promoted the direct interaction of LEENE with FoxO1 protein, stimulated FoxO1 protein degradation through the proteasome pathway, induced ABCA1 transcription, and finally suppressed lipid accumulation in THP-1 macrophage-derived foam cells. TNFAIP1 knockdown also up-regulated ABCA1 expression, improved plasma lipid profiles, enhanced the efficiency of reverse cholesterol transport and attenuated lesion area in apoE<sup>-/-</sup> mice. Taken together, these results provide the first direct evidence that TNFAIP1 aggravates atherosclerosis by promoting macrophage lipid accumulation via the LEENE/FoxO1/ABCA1 signaling pathway. TNFAIP1 may represent a promising therapeutic target for atherosclerotic cardiovascular disease.</p>\",\"PeriodicalId\":16779,\"journal\":{\"name\":\"Journal of physiology and biochemistry\",\"volume\":\" \",\"pages\":\"523-539\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physiology and biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13105-024-01018-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-024-01018-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

巨噬细胞脂质积累是泡沫细胞形成和动脉粥样硬化的关键因素。肿瘤坏死因子-α诱导蛋白1(TNFAIP1)与心血管疾病密切相关。然而,它在动脉粥样硬化发生过程中的作用和分子机制仍不清楚。利用慢病毒载体在THP-1巨噬细胞衍生的泡沫细胞和载脂蛋白缺乏(apoE-/-)小鼠中敲除TNFAIP1。通过 qRT-PCR 和/或 Western 印迹评估了增强内皮一氧化氮合酶表达的 lncRNA(LEENE)、叉头框 O1(FoxO1)和 ATP 结合盒转运体 A1(ABCA1)的表达。巨噬细胞中的脂质积累通过高效液相色谱法和油红 O 染色法进行评估。为验证LEENE与FoxO1蛋白之间的相互作用,进行了RNA免疫沉淀和RNA牵引试验。动脉粥样硬化病变采用 HE、Oil red O 和 Masson 染色法进行分析。结果表明,TNFAIP1在负载氧化低密度脂蛋白的THP-1巨噬细胞中显著增加。敲除TNFAIP1可增强LEENE的表达,促进LEENE与FoxO1蛋白的直接相互作用,刺激FoxO1蛋白通过蛋白酶体途径降解,诱导ABCA1转录,最终抑制THP-1巨噬细胞源性泡沫细胞的脂质积累。敲除 TNFAIP1 还能上调 ABCA1 的表达,改善血浆脂质状况,提高胆固醇逆向转运的效率,减小 apoE-/- 小鼠的病变面积。综上所述,这些结果首次提供了直接证据,证明 TNFAIP1 通过 LEENE/FoxO1/ABCA1 信号通路促进巨噬细胞脂质积累,从而加重动脉粥样硬化。TNFAIP1 可能是治疗动脉粥样硬化性心血管疾病的一个有前途的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

TNFAIP1 promotes macrophage lipid accumulation and accelerates the development of atherosclerosis through the LEENE/FoxO1/ABCA1 pathway.

TNFAIP1 promotes macrophage lipid accumulation and accelerates the development of atherosclerosis through the LEENE/FoxO1/ABCA1 pathway.

Macrophage lipid accumulation is a critical contributor to foam cell formation and atherosclerosis. Tumor necrosis factor-α-induced protein 1 (TNFAIP1) is closely associated with cardiovascular disease. However, its role and molecular mechanisms in atherogenesis remain unclear. TNFAIP1 was knocked down in THP-1 macrophage-derived foam cells and apolipoprotein-deficient (apoE-/-) mice using lentiviral vector. The expression of lncRNA enhancing endothelial nitric oxide synthase expression (LEENE), Forkhead box O1 (FoxO1) and ATP binding cassette transporter A1 (ABCA1) was evaluated by qRT-PCR and/or western blot. Lipid accumulation in macrophage was assessed by high-performance liquid chromatography and Oil red O staining. RNA immunoprecipitation and RNA pull-down assay were performed to verify the interaction between LEENE and FoxO1 protein. Atherosclerotic lesions were analyzed using HE, Oil red O and Masson staining. Our results showed that TNFAIP1 was significantly increased in THP-1 macrophages loaded with oxidized low-density lipoprotein. Knockdown of TNFAIP1 enhanced LEENE expression, promoted the direct interaction of LEENE with FoxO1 protein, stimulated FoxO1 protein degradation through the proteasome pathway, induced ABCA1 transcription, and finally suppressed lipid accumulation in THP-1 macrophage-derived foam cells. TNFAIP1 knockdown also up-regulated ABCA1 expression, improved plasma lipid profiles, enhanced the efficiency of reverse cholesterol transport and attenuated lesion area in apoE-/- mice. Taken together, these results provide the first direct evidence that TNFAIP1 aggravates atherosclerosis by promoting macrophage lipid accumulation via the LEENE/FoxO1/ABCA1 signaling pathway. TNFAIP1 may represent a promising therapeutic target for atherosclerotic cardiovascular disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of physiology and biochemistry
Journal of physiology and biochemistry 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信