{"title":"FTO与胃癌患者的预后和免疫浸润有关,并调控TGF-β的表达","authors":"Huan Lai, Nan Hu, Miao Zhang, Weiwei Jiang, Yiqian Han, Chenxi Mao, Kangjie Zhou, Jingzhou Zhang, Yidong Hong, Fenglei Wu","doi":"10.2174/0113862073299882240530051559","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study aimed to examine the associations of FTO expression with prognosis, tumor microenvironment (TME), immune cell infiltration, immune checkpoint genes, and relevant signaling pathways in GC. Furthermore, the relationship between FTO and TGF-β was studied in GC.</p><p><strong>Methods: </strong>The mRNA expression and clinical survival data of GC samples were obtained from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD). TIMER2, TNM plot, and GEPIA database were used to analyze FTO expression. The associations of FTO with prognosis and clinicopathologic features were assessed using the Kaplan-Meier plotter and UALCAN database, respectively. The R software was employed to analyze its related signaling pathways and the associations with TME, immune cell infiltration, and immune checkpoint genes. GEPIA and ENCORI were used to examine the association of FTO with TGF-β expression. The SRAMP website was utilized to predict m6A modification of TGF-β. IHC, Western blot, and qPCR were used to analyze the expression levels of FTO and TGF-β in clinical gastric cancer tissue samples or gastric cancer cell lines. In addition, a m6A RNA methylation assay kit was used to determine m6A levels in gastric cancer cells.</p><p><strong>Results: </strong>FTO mRNA and protein levels were significantly elevated in GC compared to normal gastric tissues. Kaplan-Meier survival analysis suggested that upregulated FTO was associated with a worse prognosis in GC. Upregulated FTO was markedly correlated with differentiation degree, lymph node metastasis, and clinical TNM stage. GO and KEGG pathway analyses revealed that FTO-associated molecules were enriched in neuroactive ligand-receptor interaction, calcium signaling, PI3k-Akt signaling, cAMP signaling pathways, and TGF-β signaling pathways, among others. The TME score was remarkably higher in the high-FTO group than in the low-FTO group. Furthermore, FTO expression had positive correlations with different types of immune cells and immune checkpoint genes. Moreover, FTO may regulate TGF-β in an m6A RNA modification manner in GC.</p><p><strong>Conclusion: </strong>FTO may become an independent predictive prognostic biomarker correlating with TME, immune cell infiltration, and immune checkpoint genes in gastric cancer and might influence GC progression by regulating TGF-β expression.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FTO is Associated with Patient Prognosis and Immune Infiltrates in Gastric Cancer and Regulates TGF-β Expression.\",\"authors\":\"Huan Lai, Nan Hu, Miao Zhang, Weiwei Jiang, Yiqian Han, Chenxi Mao, Kangjie Zhou, Jingzhou Zhang, Yidong Hong, Fenglei Wu\",\"doi\":\"10.2174/0113862073299882240530051559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>This study aimed to examine the associations of FTO expression with prognosis, tumor microenvironment (TME), immune cell infiltration, immune checkpoint genes, and relevant signaling pathways in GC. Furthermore, the relationship between FTO and TGF-β was studied in GC.</p><p><strong>Methods: </strong>The mRNA expression and clinical survival data of GC samples were obtained from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD). TIMER2, TNM plot, and GEPIA database were used to analyze FTO expression. The associations of FTO with prognosis and clinicopathologic features were assessed using the Kaplan-Meier plotter and UALCAN database, respectively. The R software was employed to analyze its related signaling pathways and the associations with TME, immune cell infiltration, and immune checkpoint genes. GEPIA and ENCORI were used to examine the association of FTO with TGF-β expression. The SRAMP website was utilized to predict m6A modification of TGF-β. IHC, Western blot, and qPCR were used to analyze the expression levels of FTO and TGF-β in clinical gastric cancer tissue samples or gastric cancer cell lines. In addition, a m6A RNA methylation assay kit was used to determine m6A levels in gastric cancer cells.</p><p><strong>Results: </strong>FTO mRNA and protein levels were significantly elevated in GC compared to normal gastric tissues. Kaplan-Meier survival analysis suggested that upregulated FTO was associated with a worse prognosis in GC. Upregulated FTO was markedly correlated with differentiation degree, lymph node metastasis, and clinical TNM stage. GO and KEGG pathway analyses revealed that FTO-associated molecules were enriched in neuroactive ligand-receptor interaction, calcium signaling, PI3k-Akt signaling, cAMP signaling pathways, and TGF-β signaling pathways, among others. The TME score was remarkably higher in the high-FTO group than in the low-FTO group. Furthermore, FTO expression had positive correlations with different types of immune cells and immune checkpoint genes. Moreover, FTO may regulate TGF-β in an m6A RNA modification manner in GC.</p><p><strong>Conclusion: </strong>FTO may become an independent predictive prognostic biomarker correlating with TME, immune cell infiltration, and immune checkpoint genes in gastric cancer and might influence GC progression by regulating TGF-β expression.</p>\",\"PeriodicalId\":10491,\"journal\":{\"name\":\"Combinatorial chemistry & high throughput screening\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorial chemistry & high throughput screening\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113862073299882240530051559\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073299882240530051559","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
FTO is Associated with Patient Prognosis and Immune Infiltrates in Gastric Cancer and Regulates TGF-β Expression.
Aims: This study aimed to examine the associations of FTO expression with prognosis, tumor microenvironment (TME), immune cell infiltration, immune checkpoint genes, and relevant signaling pathways in GC. Furthermore, the relationship between FTO and TGF-β was studied in GC.
Methods: The mRNA expression and clinical survival data of GC samples were obtained from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD). TIMER2, TNM plot, and GEPIA database were used to analyze FTO expression. The associations of FTO with prognosis and clinicopathologic features were assessed using the Kaplan-Meier plotter and UALCAN database, respectively. The R software was employed to analyze its related signaling pathways and the associations with TME, immune cell infiltration, and immune checkpoint genes. GEPIA and ENCORI were used to examine the association of FTO with TGF-β expression. The SRAMP website was utilized to predict m6A modification of TGF-β. IHC, Western blot, and qPCR were used to analyze the expression levels of FTO and TGF-β in clinical gastric cancer tissue samples or gastric cancer cell lines. In addition, a m6A RNA methylation assay kit was used to determine m6A levels in gastric cancer cells.
Results: FTO mRNA and protein levels were significantly elevated in GC compared to normal gastric tissues. Kaplan-Meier survival analysis suggested that upregulated FTO was associated with a worse prognosis in GC. Upregulated FTO was markedly correlated with differentiation degree, lymph node metastasis, and clinical TNM stage. GO and KEGG pathway analyses revealed that FTO-associated molecules were enriched in neuroactive ligand-receptor interaction, calcium signaling, PI3k-Akt signaling, cAMP signaling pathways, and TGF-β signaling pathways, among others. The TME score was remarkably higher in the high-FTO group than in the low-FTO group. Furthermore, FTO expression had positive correlations with different types of immune cells and immune checkpoint genes. Moreover, FTO may regulate TGF-β in an m6A RNA modification manner in GC.
Conclusion: FTO may become an independent predictive prognostic biomarker correlating with TME, immune cell infiltration, and immune checkpoint genes in gastric cancer and might influence GC progression by regulating TGF-β expression.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.