{"title":"6-gingerol 的分离和 1,4-苯并二氮杂卓衍生物的半合成:原位药代动力学特性、分子对接和分子动力学模拟评估","authors":"Mariyappan Vaithiyalingam , Ramasamy Mohan Kumar , Prerna Khagar , Sarvesh Sabarathinam , Yahia Alghazwani , Kumarappan Chidambaram","doi":"10.1016/j.sjbs.2024.104048","DOIUrl":null,"url":null,"abstract":"<div><p>This paper outlines a methodical approach for isolating 6-gingerol (1a) from <em>Zingiber officinale Roscoe</em> rhizomes on a gram-scale, resulting in a product of high purity and significant yield. Further, 6-gingerol (1a) [SSG1] derivatives, including 1-(4-hydroxy-3-methoxyphenyl)decane-3,5-dione (1ab), were synthesized via a semi-synthetic pathway involving DMP-mediated fast oxidation and replication. Subsequently, a new series of 1,4-benzodiazepines (3a-c) was synthesized quantitatively using a basic technique. This synthesis necessitated the interaction of 1ab with various o-phenylenediamine (2a-c) compounds. Spectroscopic methods were employed to characterize the synthesized 1,4-benzodiazepines (3a-c)[SSG2, SSG3 & SSG4]. Despite extensive investments by pharmaceutical companies in traditional drug research and development for diseases like type 2 diabetes (T2D), successful treatments remain elusive. Medication repurposing has gained traction as a strategy to address not only diabetes but also other disorders. Leveraging existing molecular pharmacology data accelerates the development of new medications. This paper underscores the importance of repurposing traditional medicines to combat a range of communicable and non-communicable diseases, offering a promising avenue for therapeutic advancement. Additionally, molecular docking studies suggested that one derivative (SSG2) exhibited stronger binding affinity compared to the reference standards. Overall, the findings of this study highlight the potential of semi-synthetic gingerol derivatives for the development of novel therapeutic agents.</p></div>","PeriodicalId":21540,"journal":{"name":"Saudi Journal of Biological Sciences","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319562X24001268/pdfft?md5=903aa2dd1a8ddd657d0b5abad206925d&pid=1-s2.0-S1319562X24001268-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Isolation of 6-gingerol and semi-synthesis of 1,4-benzodiazepines derivatives: An in-situ pharmacokinetics properties, molecular docking and molecular dynamics simulation assessments\",\"authors\":\"Mariyappan Vaithiyalingam , Ramasamy Mohan Kumar , Prerna Khagar , Sarvesh Sabarathinam , Yahia Alghazwani , Kumarappan Chidambaram\",\"doi\":\"10.1016/j.sjbs.2024.104048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper outlines a methodical approach for isolating 6-gingerol (1a) from <em>Zingiber officinale Roscoe</em> rhizomes on a gram-scale, resulting in a product of high purity and significant yield. Further, 6-gingerol (1a) [SSG1] derivatives, including 1-(4-hydroxy-3-methoxyphenyl)decane-3,5-dione (1ab), were synthesized via a semi-synthetic pathway involving DMP-mediated fast oxidation and replication. Subsequently, a new series of 1,4-benzodiazepines (3a-c) was synthesized quantitatively using a basic technique. This synthesis necessitated the interaction of 1ab with various o-phenylenediamine (2a-c) compounds. Spectroscopic methods were employed to characterize the synthesized 1,4-benzodiazepines (3a-c)[SSG2, SSG3 & SSG4]. Despite extensive investments by pharmaceutical companies in traditional drug research and development for diseases like type 2 diabetes (T2D), successful treatments remain elusive. Medication repurposing has gained traction as a strategy to address not only diabetes but also other disorders. Leveraging existing molecular pharmacology data accelerates the development of new medications. This paper underscores the importance of repurposing traditional medicines to combat a range of communicable and non-communicable diseases, offering a promising avenue for therapeutic advancement. Additionally, molecular docking studies suggested that one derivative (SSG2) exhibited stronger binding affinity compared to the reference standards. Overall, the findings of this study highlight the potential of semi-synthetic gingerol derivatives for the development of novel therapeutic agents.</p></div>\",\"PeriodicalId\":21540,\"journal\":{\"name\":\"Saudi Journal of Biological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319562X24001268/pdfft?md5=903aa2dd1a8ddd657d0b5abad206925d&pid=1-s2.0-S1319562X24001268-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Saudi Journal of Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319562X24001268\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Saudi Journal of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319562X24001268","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Isolation of 6-gingerol and semi-synthesis of 1,4-benzodiazepines derivatives: An in-situ pharmacokinetics properties, molecular docking and molecular dynamics simulation assessments
This paper outlines a methodical approach for isolating 6-gingerol (1a) from Zingiber officinale Roscoe rhizomes on a gram-scale, resulting in a product of high purity and significant yield. Further, 6-gingerol (1a) [SSG1] derivatives, including 1-(4-hydroxy-3-methoxyphenyl)decane-3,5-dione (1ab), were synthesized via a semi-synthetic pathway involving DMP-mediated fast oxidation and replication. Subsequently, a new series of 1,4-benzodiazepines (3a-c) was synthesized quantitatively using a basic technique. This synthesis necessitated the interaction of 1ab with various o-phenylenediamine (2a-c) compounds. Spectroscopic methods were employed to characterize the synthesized 1,4-benzodiazepines (3a-c)[SSG2, SSG3 & SSG4]. Despite extensive investments by pharmaceutical companies in traditional drug research and development for diseases like type 2 diabetes (T2D), successful treatments remain elusive. Medication repurposing has gained traction as a strategy to address not only diabetes but also other disorders. Leveraging existing molecular pharmacology data accelerates the development of new medications. This paper underscores the importance of repurposing traditional medicines to combat a range of communicable and non-communicable diseases, offering a promising avenue for therapeutic advancement. Additionally, molecular docking studies suggested that one derivative (SSG2) exhibited stronger binding affinity compared to the reference standards. Overall, the findings of this study highlight the potential of semi-synthetic gingerol derivatives for the development of novel therapeutic agents.
期刊介绍:
Saudi Journal of Biological Sciences is an English language, peer-reviewed scholarly publication in the area of biological sciences. Saudi Journal of Biological Sciences publishes original papers, reviews and short communications on, but not limited to:
• Biology, Ecology and Ecosystems, Environmental and Biodiversity
• Conservation
• Microbiology
• Physiology
• Genetics and Epidemiology
Saudi Journal of Biological Sciences is the official publication of the Saudi Society for Biological Sciences and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.