Yaojun Hao , Haotian Wang , Qingshan Zhao , Liping Feng , Jian Wang
{"title":"通过知识图谱检测逆向学习注入攻击","authors":"Yaojun Hao , Haotian Wang , Qingshan Zhao , Liping Feng , Jian Wang","doi":"10.1016/j.is.2024.102419","DOIUrl":null,"url":null,"abstract":"<div><p>Over the past two decades, many studies have devoted a good deal of attention to detect injection attacks in recommender systems. However, most of the studies mainly focus on detecting the heuristically-generated injection attacks, which are heuristically fabricated by hand-engineering. In practice, the adversarially-learned injection attacks have been proposed based on optimization methods and enhanced the ability in the camouflage and threat. Under the adversarially-learned injection attacks, the traditional detection models are likely to be fooled. In this paper, a detection method is proposed for the adversarially-learned injection attacks via knowledge graphs. Firstly, with the advantages of wealth information from knowledge graphs, item-pairs on the extension hops of knowledge graphs are regarded as the implicit preferences for users. Also, the item-pair popularity series and user item-pair matrix are constructed to express the user's preferences. Secondly, the word embedding model and principal component analysis are utilized to extract the user's initial vector representations from the item-pair popularity series and item-pair matrix, respectively. Moreover, the Variational Autoencoders with the improved R-drop regularization are used to reconstruct the embedding vectors and further identify the shilling profiles. Finally, the experiments on three real-world datasets indicate that the proposed detector has superior performance than benchmark methods when detecting the adversarially-learned injection attacks. In addition, the detector is evaluated under the heuristically-generated injection attacks and demonstrates the outstanding performance.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"125 ","pages":"Article 102419"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting the adversarially-learned injection attacks via knowledge graphs\",\"authors\":\"Yaojun Hao , Haotian Wang , Qingshan Zhao , Liping Feng , Jian Wang\",\"doi\":\"10.1016/j.is.2024.102419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over the past two decades, many studies have devoted a good deal of attention to detect injection attacks in recommender systems. However, most of the studies mainly focus on detecting the heuristically-generated injection attacks, which are heuristically fabricated by hand-engineering. In practice, the adversarially-learned injection attacks have been proposed based on optimization methods and enhanced the ability in the camouflage and threat. Under the adversarially-learned injection attacks, the traditional detection models are likely to be fooled. In this paper, a detection method is proposed for the adversarially-learned injection attacks via knowledge graphs. Firstly, with the advantages of wealth information from knowledge graphs, item-pairs on the extension hops of knowledge graphs are regarded as the implicit preferences for users. Also, the item-pair popularity series and user item-pair matrix are constructed to express the user's preferences. Secondly, the word embedding model and principal component analysis are utilized to extract the user's initial vector representations from the item-pair popularity series and item-pair matrix, respectively. Moreover, the Variational Autoencoders with the improved R-drop regularization are used to reconstruct the embedding vectors and further identify the shilling profiles. Finally, the experiments on three real-world datasets indicate that the proposed detector has superior performance than benchmark methods when detecting the adversarially-learned injection attacks. In addition, the detector is evaluated under the heuristically-generated injection attacks and demonstrates the outstanding performance.</p></div>\",\"PeriodicalId\":50363,\"journal\":{\"name\":\"Information Systems\",\"volume\":\"125 \",\"pages\":\"Article 102419\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306437924000772\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924000772","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Detecting the adversarially-learned injection attacks via knowledge graphs
Over the past two decades, many studies have devoted a good deal of attention to detect injection attacks in recommender systems. However, most of the studies mainly focus on detecting the heuristically-generated injection attacks, which are heuristically fabricated by hand-engineering. In practice, the adversarially-learned injection attacks have been proposed based on optimization methods and enhanced the ability in the camouflage and threat. Under the adversarially-learned injection attacks, the traditional detection models are likely to be fooled. In this paper, a detection method is proposed for the adversarially-learned injection attacks via knowledge graphs. Firstly, with the advantages of wealth information from knowledge graphs, item-pairs on the extension hops of knowledge graphs are regarded as the implicit preferences for users. Also, the item-pair popularity series and user item-pair matrix are constructed to express the user's preferences. Secondly, the word embedding model and principal component analysis are utilized to extract the user's initial vector representations from the item-pair popularity series and item-pair matrix, respectively. Moreover, the Variational Autoencoders with the improved R-drop regularization are used to reconstruct the embedding vectors and further identify the shilling profiles. Finally, the experiments on three real-world datasets indicate that the proposed detector has superior performance than benchmark methods when detecting the adversarially-learned injection attacks. In addition, the detector is evaluated under the heuristically-generated injection attacks and demonstrates the outstanding performance.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.