Shuang Liu , Lingxin Wu , Shiyong Zhen , Qinxian Lin , Xisheng Hu , Jian Li
{"title":"是地形还是气候因素主导植被恢复力?来自中国三个不同气候带国家公园的证据","authors":"Shuang Liu , Lingxin Wu , Shiyong Zhen , Qinxian Lin , Xisheng Hu , Jian Li","doi":"10.1016/j.fecs.2024.100212","DOIUrl":null,"url":null,"abstract":"<div><p>Vegetation resilience (VR), providing an objective measure of ecosystem health, has received considerable attention, however, there is still limited understanding of whether the dominant factors differ across different climate zones. We took the three national parks (Hainan Tropical Rainforest National Park, HTR; Wuyishan National Park, WYS; and Northeast Tiger and Leopard National Park, NTL) of China with less human interference as cases, which are distributed in different climatic zones, including tropical, subtropical and temperate monsoon climates, respectively. Then, we employed the probabilistic decay method to explore the spatio-temporal changes in the VR and their natural driving patterns using Geographically Weighted Regression (GWR) model as well. The results revealed that: (1) from 2000 to 2020, the Normalized Difference Vegetation Index (NDVI) of the three national parks fluctuated between 0.800 and 0.960, exhibiting an overall upward trend, with the mean NDVI of NTL (0.923) > HTR (0.899) > WYS (0.823); (2) the positive trend decay time of vegetation exceeded that of negative trend, indicating vegetation gradual recovery of the three national parks since 2012; (3) the VR of HTR was primarily influenced by elevation, aspect, average annual temperature change (AATC), and average annual precipitation change (AAPC); the WYS’ VR was mainly affected by elevation, average annual precipitation (AAP), and AAPC; while the terrain factors (elevation and slope) were the main driving factors of VR in NTL; (4) among the main factors influencing the VR changes, the AAPC had the highest proportion in HTR (66.7%), and the AAP occupied the largest area proportion in WYS (80.4%). While in NTL, elevation served as the main driving factor for the VR, encompassing 64.2% of its area. Consequently, our findings indicated that precipitation factors were the main driving force for the VR changes in HTR and WYS national parks, while elevation was the main factors that drove the VR in NTL. Our research has promoted a deeper understanding of the driving mechanism behind the VR.</p></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2197562024000484/pdfft?md5=e442f83ba23a7848f1262720ae3f4aff&pid=1-s2.0-S2197562024000484-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Terrain or climate factor dominates vegetation resilience? Evidence from three national parks across different climatic zones in China\",\"authors\":\"Shuang Liu , Lingxin Wu , Shiyong Zhen , Qinxian Lin , Xisheng Hu , Jian Li\",\"doi\":\"10.1016/j.fecs.2024.100212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vegetation resilience (VR), providing an objective measure of ecosystem health, has received considerable attention, however, there is still limited understanding of whether the dominant factors differ across different climate zones. We took the three national parks (Hainan Tropical Rainforest National Park, HTR; Wuyishan National Park, WYS; and Northeast Tiger and Leopard National Park, NTL) of China with less human interference as cases, which are distributed in different climatic zones, including tropical, subtropical and temperate monsoon climates, respectively. Then, we employed the probabilistic decay method to explore the spatio-temporal changes in the VR and their natural driving patterns using Geographically Weighted Regression (GWR) model as well. The results revealed that: (1) from 2000 to 2020, the Normalized Difference Vegetation Index (NDVI) of the three national parks fluctuated between 0.800 and 0.960, exhibiting an overall upward trend, with the mean NDVI of NTL (0.923) > HTR (0.899) > WYS (0.823); (2) the positive trend decay time of vegetation exceeded that of negative trend, indicating vegetation gradual recovery of the three national parks since 2012; (3) the VR of HTR was primarily influenced by elevation, aspect, average annual temperature change (AATC), and average annual precipitation change (AAPC); the WYS’ VR was mainly affected by elevation, average annual precipitation (AAP), and AAPC; while the terrain factors (elevation and slope) were the main driving factors of VR in NTL; (4) among the main factors influencing the VR changes, the AAPC had the highest proportion in HTR (66.7%), and the AAP occupied the largest area proportion in WYS (80.4%). While in NTL, elevation served as the main driving factor for the VR, encompassing 64.2% of its area. Consequently, our findings indicated that precipitation factors were the main driving force for the VR changes in HTR and WYS national parks, while elevation was the main factors that drove the VR in NTL. Our research has promoted a deeper understanding of the driving mechanism behind the VR.</p></div>\",\"PeriodicalId\":54270,\"journal\":{\"name\":\"Forest Ecosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2197562024000484/pdfft?md5=e442f83ba23a7848f1262720ae3f4aff&pid=1-s2.0-S2197562024000484-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Ecosystems\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2197562024000484\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562024000484","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Terrain or climate factor dominates vegetation resilience? Evidence from three national parks across different climatic zones in China
Vegetation resilience (VR), providing an objective measure of ecosystem health, has received considerable attention, however, there is still limited understanding of whether the dominant factors differ across different climate zones. We took the three national parks (Hainan Tropical Rainforest National Park, HTR; Wuyishan National Park, WYS; and Northeast Tiger and Leopard National Park, NTL) of China with less human interference as cases, which are distributed in different climatic zones, including tropical, subtropical and temperate monsoon climates, respectively. Then, we employed the probabilistic decay method to explore the spatio-temporal changes in the VR and their natural driving patterns using Geographically Weighted Regression (GWR) model as well. The results revealed that: (1) from 2000 to 2020, the Normalized Difference Vegetation Index (NDVI) of the three national parks fluctuated between 0.800 and 0.960, exhibiting an overall upward trend, with the mean NDVI of NTL (0.923) > HTR (0.899) > WYS (0.823); (2) the positive trend decay time of vegetation exceeded that of negative trend, indicating vegetation gradual recovery of the three national parks since 2012; (3) the VR of HTR was primarily influenced by elevation, aspect, average annual temperature change (AATC), and average annual precipitation change (AAPC); the WYS’ VR was mainly affected by elevation, average annual precipitation (AAP), and AAPC; while the terrain factors (elevation and slope) were the main driving factors of VR in NTL; (4) among the main factors influencing the VR changes, the AAPC had the highest proportion in HTR (66.7%), and the AAP occupied the largest area proportion in WYS (80.4%). While in NTL, elevation served as the main driving factor for the VR, encompassing 64.2% of its area. Consequently, our findings indicated that precipitation factors were the main driving force for the VR changes in HTR and WYS national parks, while elevation was the main factors that drove the VR in NTL. Our research has promoted a deeper understanding of the driving mechanism behind the VR.
Forest EcosystemsEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍:
Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.