Stephan Harrison , Darren B. Jones , Adina E. Racoviteanu , Karen Anderson , Sarah Shannon , Richard A. Betts , Ruolin Leng
{"title":"喜马拉雅山脉的岩冰川分布","authors":"Stephan Harrison , Darren B. Jones , Adina E. Racoviteanu , Karen Anderson , Sarah Shannon , Richard A. Betts , Ruolin Leng","doi":"10.1016/j.gloplacha.2024.104481","DOIUrl":null,"url":null,"abstract":"<div><p>In High Mountain Asia, human-induced climate warming threatens the cryosphere. Expected long-term reductions in future runoff from glacial catchments raises concerns regarding the sustainability of these natural ‘water towers’ and the implications of reduced water availability for regional human and ecological systems. Ice-debris landforms (I-DL), containing ice whether moving or not include rock glaciers and ice-cored moraines, and are likely to be climatically more resilient than debris-covered and debris-free glaciers. Recent work has shown that rock glaciers contain globally valuable water supplies yet over High Mountain Asia information regarding their number, spatial distribution, morphometric characteristics and water content are scarce. Here, we present the first systematic estimate of the current extent and distribution of rock glaciers for a subset of High Mountain Asia (the Himalaya). A sample of 2070 intact and relict rock glaciers were digitized on Google Earth imagery from the Western, Central and Eastern Himalaya regions and then quantitative and qualitative characteristics were analysed regionally based on topographic data from the NASA Shuttle Radar Topography Mission (SRTM) Version 3.0 and then aggregated across the Himalaya using an “upscaling” method. The majority of the digitized landforms (∼65%) were categorised as intact rock glaciers (i.e., ice-debris Landforms, or I-DLs, containing ice) and the remainder as relict rock glaciers (i.e., discrete debris accumulations or DDAs, not containing ice). They range in elevation from 3225 to 5766 m a.s.l., with the lowest in the Central Himalaya. Sampled relict and intact rock glaciers are primarily situated on northern quadrants. Over the entire Himalaya, we identified ∼25,000 landforms, with a total estimated areal coverage of 3747 km<sup>2</sup>. The area upscaling method was validated in the Manaslu region of Nepal using high-resolution Planet data (5 m) and freely available, fine spatial resolution optical satellite data accessed through Google Earth Pro and ESRI basemaps. In absence of complete rock glacier inventories over the Himalaya, our approach proves useful to investigate the nature, distribution and infer potential future behaviour of these landforms across the Himalaya in a changing climate.</p></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0921818124001280/pdfft?md5=386336226b3f279fccdee390d504eec0&pid=1-s2.0-S0921818124001280-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Rock glacier distribution across the Himalaya\",\"authors\":\"Stephan Harrison , Darren B. Jones , Adina E. Racoviteanu , Karen Anderson , Sarah Shannon , Richard A. Betts , Ruolin Leng\",\"doi\":\"10.1016/j.gloplacha.2024.104481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In High Mountain Asia, human-induced climate warming threatens the cryosphere. Expected long-term reductions in future runoff from glacial catchments raises concerns regarding the sustainability of these natural ‘water towers’ and the implications of reduced water availability for regional human and ecological systems. Ice-debris landforms (I-DL), containing ice whether moving or not include rock glaciers and ice-cored moraines, and are likely to be climatically more resilient than debris-covered and debris-free glaciers. Recent work has shown that rock glaciers contain globally valuable water supplies yet over High Mountain Asia information regarding their number, spatial distribution, morphometric characteristics and water content are scarce. Here, we present the first systematic estimate of the current extent and distribution of rock glaciers for a subset of High Mountain Asia (the Himalaya). A sample of 2070 intact and relict rock glaciers were digitized on Google Earth imagery from the Western, Central and Eastern Himalaya regions and then quantitative and qualitative characteristics were analysed regionally based on topographic data from the NASA Shuttle Radar Topography Mission (SRTM) Version 3.0 and then aggregated across the Himalaya using an “upscaling” method. The majority of the digitized landforms (∼65%) were categorised as intact rock glaciers (i.e., ice-debris Landforms, or I-DLs, containing ice) and the remainder as relict rock glaciers (i.e., discrete debris accumulations or DDAs, not containing ice). They range in elevation from 3225 to 5766 m a.s.l., with the lowest in the Central Himalaya. Sampled relict and intact rock glaciers are primarily situated on northern quadrants. Over the entire Himalaya, we identified ∼25,000 landforms, with a total estimated areal coverage of 3747 km<sup>2</sup>. The area upscaling method was validated in the Manaslu region of Nepal using high-resolution Planet data (5 m) and freely available, fine spatial resolution optical satellite data accessed through Google Earth Pro and ESRI basemaps. In absence of complete rock glacier inventories over the Himalaya, our approach proves useful to investigate the nature, distribution and infer potential future behaviour of these landforms across the Himalaya in a changing climate.</p></div>\",\"PeriodicalId\":55089,\"journal\":{\"name\":\"Global and Planetary Change\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0921818124001280/pdfft?md5=386336226b3f279fccdee390d504eec0&pid=1-s2.0-S0921818124001280-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global and Planetary Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921818124001280\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124001280","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
In High Mountain Asia, human-induced climate warming threatens the cryosphere. Expected long-term reductions in future runoff from glacial catchments raises concerns regarding the sustainability of these natural ‘water towers’ and the implications of reduced water availability for regional human and ecological systems. Ice-debris landforms (I-DL), containing ice whether moving or not include rock glaciers and ice-cored moraines, and are likely to be climatically more resilient than debris-covered and debris-free glaciers. Recent work has shown that rock glaciers contain globally valuable water supplies yet over High Mountain Asia information regarding their number, spatial distribution, morphometric characteristics and water content are scarce. Here, we present the first systematic estimate of the current extent and distribution of rock glaciers for a subset of High Mountain Asia (the Himalaya). A sample of 2070 intact and relict rock glaciers were digitized on Google Earth imagery from the Western, Central and Eastern Himalaya regions and then quantitative and qualitative characteristics were analysed regionally based on topographic data from the NASA Shuttle Radar Topography Mission (SRTM) Version 3.0 and then aggregated across the Himalaya using an “upscaling” method. The majority of the digitized landforms (∼65%) were categorised as intact rock glaciers (i.e., ice-debris Landforms, or I-DLs, containing ice) and the remainder as relict rock glaciers (i.e., discrete debris accumulations or DDAs, not containing ice). They range in elevation from 3225 to 5766 m a.s.l., with the lowest in the Central Himalaya. Sampled relict and intact rock glaciers are primarily situated on northern quadrants. Over the entire Himalaya, we identified ∼25,000 landforms, with a total estimated areal coverage of 3747 km2. The area upscaling method was validated in the Manaslu region of Nepal using high-resolution Planet data (5 m) and freely available, fine spatial resolution optical satellite data accessed through Google Earth Pro and ESRI basemaps. In absence of complete rock glacier inventories over the Himalaya, our approach proves useful to investigate the nature, distribution and infer potential future behaviour of these landforms across the Himalaya in a changing climate.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.