阿尔法-最大最小值是两个自我的集合体

IF 1 4区 经济学 Q3 ECONOMICS
Alain Chateauneuf , José Heleno Faro , Jean-Marc Tallon , Vassili Vergopoulos
{"title":"阿尔法-最大最小值是两个自我的集合体","authors":"Alain Chateauneuf ,&nbsp;José Heleno Faro ,&nbsp;Jean-Marc Tallon ,&nbsp;Vassili Vergopoulos","doi":"10.1016/j.jmateco.2024.103006","DOIUrl":null,"url":null,"abstract":"<div><p>This paper offers a novel perspective on the <span><math><mi>α</mi></math></span>-maxmin model, taking its components as originating from distinct selves within the decision maker. Drawing from the notion of multiple selves prevalent in inter-temporal decision-making contexts, we present an aggregation approach where each self possesses its own preference relation. Contrary to existing interpretations, these selves are not merely a means to interpret the decision maker’s overall utility function but are considered as primitives. Through consistency requirements, we derive an <span><math><mi>α</mi></math></span>-maxmin representation as an outcome of a convex combination of the preferences of two distinct selves. We first explore a setting involving objective information and then move on to a fully subjective derivation.</p></div>","PeriodicalId":50145,"journal":{"name":"Journal of Mathematical Economics","volume":"113 ","pages":"Article 103006"},"PeriodicalIF":1.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alpha-maxmin as an aggregation of two selves\",\"authors\":\"Alain Chateauneuf ,&nbsp;José Heleno Faro ,&nbsp;Jean-Marc Tallon ,&nbsp;Vassili Vergopoulos\",\"doi\":\"10.1016/j.jmateco.2024.103006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper offers a novel perspective on the <span><math><mi>α</mi></math></span>-maxmin model, taking its components as originating from distinct selves within the decision maker. Drawing from the notion of multiple selves prevalent in inter-temporal decision-making contexts, we present an aggregation approach where each self possesses its own preference relation. Contrary to existing interpretations, these selves are not merely a means to interpret the decision maker’s overall utility function but are considered as primitives. Through consistency requirements, we derive an <span><math><mi>α</mi></math></span>-maxmin representation as an outcome of a convex combination of the preferences of two distinct selves. We first explore a setting involving objective information and then move on to a fully subjective derivation.</p></div>\",\"PeriodicalId\":50145,\"journal\":{\"name\":\"Journal of Mathematical Economics\",\"volume\":\"113 \",\"pages\":\"Article 103006\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304406824000661\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304406824000661","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文从一个新的视角探讨了α-最大最小模型,将其组成部分视为源自决策者内部不同的自我。借鉴跨时空决策中普遍存在的多重自我概念,我们提出了一种聚合方法,其中每个自我都拥有自己的偏好关系。与现有的解释不同,这些自我并不仅仅是解释决策者整体效用函数的一种手段,而是被视为基元。通过一致性要求,我们推导出了α-最大最小表示法,它是两个不同自我的偏好凸组合的结果。我们首先探讨了涉及客观信息的设置,然后转向完全主观的推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alpha-maxmin as an aggregation of two selves

This paper offers a novel perspective on the α-maxmin model, taking its components as originating from distinct selves within the decision maker. Drawing from the notion of multiple selves prevalent in inter-temporal decision-making contexts, we present an aggregation approach where each self possesses its own preference relation. Contrary to existing interpretations, these selves are not merely a means to interpret the decision maker’s overall utility function but are considered as primitives. Through consistency requirements, we derive an α-maxmin representation as an outcome of a convex combination of the preferences of two distinct selves. We first explore a setting involving objective information and then move on to a fully subjective derivation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Economics
Journal of Mathematical Economics 管理科学-数学跨学科应用
CiteScore
1.70
自引率
7.70%
发文量
73
审稿时长
12.5 weeks
期刊介绍: The primary objective of the Journal is to provide a forum for work in economic theory which expresses economic ideas using formal mathematical reasoning. For work to add to this primary objective, it is not sufficient that the mathematical reasoning be new and correct. The work must have real economic content. The economic ideas must be interesting and important. These ideas may pertain to any field of economics or any school of economic thought.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信