{"title":"双辊铸造流分布过程中的流动、传热和凝固特性研究","authors":"Yansheng Zhang, Zhenlei Li, Yang Tang, Guo Yuan","doi":"10.1016/j.ijthermalsci.2024.109215","DOIUrl":null,"url":null,"abstract":"<div><p>Twin-roll casting (TRC) has seen a significant interest in recent years due to its short process, low energy consumption, and low emission. The research included both numerical simulation and experimental validation to examine the flow and temperature field distribution of the TRC process. The “U-shaped” buffer groove is identified as beneficial for maintaining a stable liquid level distribution in the molten pool through comparison with various flow distributor structures. The solidified billet shell dispersion around the casting roller in the molten pool is observed to undergo three distinct stages: stable growth, thickness fluctuation, and rapid growth. The inclusion of two circular side outlets, each with a diameter ranging from 8 to 10 mm, proves advantageous in maintaining a stable distribution of the liquid level within the molten pool. The edge outlet size ranges from 7 to 9 mm, and ensuring a U-shaped buffer groove width/flow distribution of 1.25–1.58 aids in enhancing casting stability.</p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on flow, heat transfer, and solidification characteristics of flow distribution process in the twin-roll casting\",\"authors\":\"Yansheng Zhang, Zhenlei Li, Yang Tang, Guo Yuan\",\"doi\":\"10.1016/j.ijthermalsci.2024.109215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Twin-roll casting (TRC) has seen a significant interest in recent years due to its short process, low energy consumption, and low emission. The research included both numerical simulation and experimental validation to examine the flow and temperature field distribution of the TRC process. The “U-shaped” buffer groove is identified as beneficial for maintaining a stable liquid level distribution in the molten pool through comparison with various flow distributor structures. The solidified billet shell dispersion around the casting roller in the molten pool is observed to undergo three distinct stages: stable growth, thickness fluctuation, and rapid growth. The inclusion of two circular side outlets, each with a diameter ranging from 8 to 10 mm, proves advantageous in maintaining a stable distribution of the liquid level within the molten pool. The edge outlet size ranges from 7 to 9 mm, and ensuring a U-shaped buffer groove width/flow distribution of 1.25–1.58 aids in enhancing casting stability.</p></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072924003375\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924003375","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Research on flow, heat transfer, and solidification characteristics of flow distribution process in the twin-roll casting
Twin-roll casting (TRC) has seen a significant interest in recent years due to its short process, low energy consumption, and low emission. The research included both numerical simulation and experimental validation to examine the flow and temperature field distribution of the TRC process. The “U-shaped” buffer groove is identified as beneficial for maintaining a stable liquid level distribution in the molten pool through comparison with various flow distributor structures. The solidified billet shell dispersion around the casting roller in the molten pool is observed to undergo three distinct stages: stable growth, thickness fluctuation, and rapid growth. The inclusion of two circular side outlets, each with a diameter ranging from 8 to 10 mm, proves advantageous in maintaining a stable distribution of the liquid level within the molten pool. The edge outlet size ranges from 7 to 9 mm, and ensuring a U-shaped buffer groove width/flow distribution of 1.25–1.58 aids in enhancing casting stability.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.