冷边界斯托克斯-布西尼斯克流中强浮力对趋化性井喷的抑制

IF 1.6 2区 数学 Q1 MATHEMATICS
Zhongtian Hu, Alexander Kiselev
{"title":"冷边界斯托克斯-布西尼斯克流中强浮力对趋化性井喷的抑制","authors":"Zhongtian Hu,&nbsp;Alexander Kiselev","doi":"10.1016/j.jfa.2024.110541","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we show that the Keller-Segel equation equipped with zero Dirichlet Boundary condition and actively coupled to a Stokes-Boussinesq flow is globally well-posed provided that the coupling is sufficiently large. We will in fact show that the dynamics is quenched after certain time. In particular, such active coupling is blowup-suppressing in the sense that it enforces global regularity for some initial data leading to a finite-time singularity when the flow is absent.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"287 7","pages":"Article 110541"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of chemotactic blowup by strong buoyancy in Stokes-Boussinesq flow with cold boundary\",\"authors\":\"Zhongtian Hu,&nbsp;Alexander Kiselev\",\"doi\":\"10.1016/j.jfa.2024.110541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we show that the Keller-Segel equation equipped with zero Dirichlet Boundary condition and actively coupled to a Stokes-Boussinesq flow is globally well-posed provided that the coupling is sufficiently large. We will in fact show that the dynamics is quenched after certain time. In particular, such active coupling is blowup-suppressing in the sense that it enforces global regularity for some initial data leading to a finite-time singularity when the flow is absent.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"287 7\",\"pages\":\"Article 110541\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624002295\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624002295","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将证明,只要耦合足够大,带有零迪里夏特边界条件并与斯托克斯-布辛斯基流积极耦合的凯勒-西格尔方程在全局上是好求的。事实上,我们将证明动力学在一定时间后会被淬灭。特别是,这种主动耦合具有抑制井喷的作用,即它能强制某些初始数据的全局正则性,从而在没有流动时产生有限时间奇点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suppression of chemotactic blowup by strong buoyancy in Stokes-Boussinesq flow with cold boundary

In this paper, we show that the Keller-Segel equation equipped with zero Dirichlet Boundary condition and actively coupled to a Stokes-Boussinesq flow is globally well-posed provided that the coupling is sufficiently large. We will in fact show that the dynamics is quenched after certain time. In particular, such active coupling is blowup-suppressing in the sense that it enforces global regularity for some initial data leading to a finite-time singularity when the flow is absent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信