Forough Hashemi , Zahra BeigMohammadi , Hadi Hashemi
{"title":"研究基于单宁酸和维生素 D3 的功能性纳米叶绿体","authors":"Forough Hashemi , Zahra BeigMohammadi , Hadi Hashemi","doi":"10.1016/j.fufo.2024.100391","DOIUrl":null,"url":null,"abstract":"<div><p>The main aim of this study was to entrap a fat-soluble vitamin (D<sub>3</sub>) and Tannic acid (TA) in nanophytosomes (NPHYs) to improve their stability and controlled release. The effects of phosphatidyl choline: TA ratio (P1:T2, P1:T1, and P2:T1) and the presence of D<sub>3</sub> on the transmission electron microscope (TEM), particle size distribution and span, zeta potential, turbidity, stability, pH, total phenolic content (TPC), encapsulation efficiency (EE), particle size, antioxidant activity and in vitro release of TA and D<sub>3</sub> were studied. A fine dispersion with particle size less than 100 nm was achieved for all NPHYs. Based on TEM, all samples had a smooth, spherical surface and formed small vesicles. The zeta potential varied from -65.2 to -55.26 mV. The P1:T2-D sample had the highest polyphenol content and antioxidant activities. Based on the thermal stability results, all samples were stable up to 50 °C. The P2:T1-D sample had the highest EE values for both D<sub>3</sub> and TA (93.70 and 92.22%, respectively) and the lowest release rate in gastric conditions. The presence of D<sub>3</sub> did not affect the stability of NPHYs. Therefore, the incorporation of TA and D<sub>3</sub> in NPHYs can be considered a promising strategy in the food and pharmaceutical industries due to the improved physical and biological stabilities.</p></div>","PeriodicalId":34474,"journal":{"name":"Future Foods","volume":"10 ","pages":"Article 100391"},"PeriodicalIF":7.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666833524000972/pdfft?md5=3cc8ac90fc5f3bf395a1b4669447eb27&pid=1-s2.0-S2666833524000972-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Study the functional nanophytosome based on tannic acid and vitamin D3\",\"authors\":\"Forough Hashemi , Zahra BeigMohammadi , Hadi Hashemi\",\"doi\":\"10.1016/j.fufo.2024.100391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main aim of this study was to entrap a fat-soluble vitamin (D<sub>3</sub>) and Tannic acid (TA) in nanophytosomes (NPHYs) to improve their stability and controlled release. The effects of phosphatidyl choline: TA ratio (P1:T2, P1:T1, and P2:T1) and the presence of D<sub>3</sub> on the transmission electron microscope (TEM), particle size distribution and span, zeta potential, turbidity, stability, pH, total phenolic content (TPC), encapsulation efficiency (EE), particle size, antioxidant activity and in vitro release of TA and D<sub>3</sub> were studied. A fine dispersion with particle size less than 100 nm was achieved for all NPHYs. Based on TEM, all samples had a smooth, spherical surface and formed small vesicles. The zeta potential varied from -65.2 to -55.26 mV. The P1:T2-D sample had the highest polyphenol content and antioxidant activities. Based on the thermal stability results, all samples were stable up to 50 °C. The P2:T1-D sample had the highest EE values for both D<sub>3</sub> and TA (93.70 and 92.22%, respectively) and the lowest release rate in gastric conditions. The presence of D<sub>3</sub> did not affect the stability of NPHYs. Therefore, the incorporation of TA and D<sub>3</sub> in NPHYs can be considered a promising strategy in the food and pharmaceutical industries due to the improved physical and biological stabilities.</p></div>\",\"PeriodicalId\":34474,\"journal\":{\"name\":\"Future Foods\",\"volume\":\"10 \",\"pages\":\"Article 100391\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666833524000972/pdfft?md5=3cc8ac90fc5f3bf395a1b4669447eb27&pid=1-s2.0-S2666833524000972-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Foods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666833524000972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Foods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666833524000972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本研究的主要目的是在纳米叶绿体(NPHYs)中夹带脂溶性维生素(D3)和丹宁酸(TA),以提高其稳定性和控释性。磷脂酰胆碱、鞣酸和维生素 D3 的比例(P1:T2, P1:T2, P1:T2, P1:T2研究了磷脂酰胆碱与 TA 的比例(P1:T2、P1:T1 和 P2:T1)以及 D3 的存在对 TA 和 D3 的透射电子显微镜(TEM)、粒度分布和跨度、ZETA 电位、浑浊度、稳定性、pH 值、总酚含量(TPC)、包封效率(EE)、粒度、抗氧化活性和体外释放的影响。所有 NPHY 均实现了粒径小于 100 纳米的精细分散。根据 TEM 分析,所有样品都具有光滑的球形表面,并形成了小囊泡。zeta 电位在 -65.2 至 -55.26 mV 之间变化。P1:T2-D 样品的多酚含量和抗氧化活性最高。根据热稳定性结果,所有样品在 50 ℃ 以下都很稳定。P2:T1-D 样品中 D3 和 TA 的 EE 值最高(分别为 93.70% 和 92.22%),在胃条件下的释放率最低。D3 的存在并不影响 NPHYs 的稳定性。因此,在 NPHYs 中掺入 TA 和 D3 可提高物理和生物稳定性,被认为是食品和制药行业的一种有前途的策略。
Study the functional nanophytosome based on tannic acid and vitamin D3
The main aim of this study was to entrap a fat-soluble vitamin (D3) and Tannic acid (TA) in nanophytosomes (NPHYs) to improve their stability and controlled release. The effects of phosphatidyl choline: TA ratio (P1:T2, P1:T1, and P2:T1) and the presence of D3 on the transmission electron microscope (TEM), particle size distribution and span, zeta potential, turbidity, stability, pH, total phenolic content (TPC), encapsulation efficiency (EE), particle size, antioxidant activity and in vitro release of TA and D3 were studied. A fine dispersion with particle size less than 100 nm was achieved for all NPHYs. Based on TEM, all samples had a smooth, spherical surface and formed small vesicles. The zeta potential varied from -65.2 to -55.26 mV. The P1:T2-D sample had the highest polyphenol content and antioxidant activities. Based on the thermal stability results, all samples were stable up to 50 °C. The P2:T1-D sample had the highest EE values for both D3 and TA (93.70 and 92.22%, respectively) and the lowest release rate in gastric conditions. The presence of D3 did not affect the stability of NPHYs. Therefore, the incorporation of TA and D3 in NPHYs can be considered a promising strategy in the food and pharmaceutical industries due to the improved physical and biological stabilities.
Future FoodsAgricultural and Biological Sciences-Food Science
CiteScore
8.60
自引率
0.00%
发文量
97
审稿时长
15 weeks
期刊介绍:
Future Foods is a specialized journal that is dedicated to tackling the challenges posed by climate change and the need for sustainability in the realm of food production. The journal recognizes the imperative to transform current food manufacturing and consumption practices to meet the dietary needs of a burgeoning global population while simultaneously curbing environmental degradation.
The mission of Future Foods is to disseminate research that aligns with the goal of fostering the development of innovative technologies and alternative food sources to establish more sustainable food systems. The journal is committed to publishing high-quality, peer-reviewed articles that contribute to the advancement of sustainable food practices.
Abstracting and indexing:
Scopus
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (ESCI)
SCImago Journal Rank (SJR)
SNIP