{"title":"在生物材料世界中发现细胞核","authors":"Steven Vermeulen , Elizabeth Rosado Balmayor","doi":"10.1016/j.bbiosy.2024.100096","DOIUrl":null,"url":null,"abstract":"<div><p>The nucleus serves as the central hub for cellular activity, driving cell identity and behavior. Despite its crucial role, understanding how biomaterials influence the nucleus remains an underexplored area of research. In our opinion, this is an overlooked opportunity, particularly in regenerative medicine — a field where cellular control is not just beneficial, but essential. As such, we emphasize the need to recognize nuclear characteristics as a key metric for evaluating material functionality. In this leading opinion article, we discuss how state-of-the-art technologies can help reveal biomaterial-driven nuclear alterations, offering crucial insights that will advance the field of regenerative medicine.</p></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"14 ","pages":"Article 100096"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666534424000096/pdfft?md5=6e94ca40eb3a32367ce139999d4386a9&pid=1-s2.0-S2666534424000096-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Discovering the nucleus in a world of biomaterials\",\"authors\":\"Steven Vermeulen , Elizabeth Rosado Balmayor\",\"doi\":\"10.1016/j.bbiosy.2024.100096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The nucleus serves as the central hub for cellular activity, driving cell identity and behavior. Despite its crucial role, understanding how biomaterials influence the nucleus remains an underexplored area of research. In our opinion, this is an overlooked opportunity, particularly in regenerative medicine — a field where cellular control is not just beneficial, but essential. As such, we emphasize the need to recognize nuclear characteristics as a key metric for evaluating material functionality. In this leading opinion article, we discuss how state-of-the-art technologies can help reveal biomaterial-driven nuclear alterations, offering crucial insights that will advance the field of regenerative medicine.</p></div>\",\"PeriodicalId\":72379,\"journal\":{\"name\":\"Biomaterials and biosystems\",\"volume\":\"14 \",\"pages\":\"Article 100096\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666534424000096/pdfft?md5=6e94ca40eb3a32367ce139999d4386a9&pid=1-s2.0-S2666534424000096-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials and biosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666534424000096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials and biosystems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666534424000096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Discovering the nucleus in a world of biomaterials
The nucleus serves as the central hub for cellular activity, driving cell identity and behavior. Despite its crucial role, understanding how biomaterials influence the nucleus remains an underexplored area of research. In our opinion, this is an overlooked opportunity, particularly in regenerative medicine — a field where cellular control is not just beneficial, but essential. As such, we emphasize the need to recognize nuclear characteristics as a key metric for evaluating material functionality. In this leading opinion article, we discuss how state-of-the-art technologies can help reveal biomaterial-driven nuclear alterations, offering crucial insights that will advance the field of regenerative medicine.