{"title":"耦合复合板剪力墙/填充混凝土(CC-PSWs/CF)的循环响应灵敏度","authors":"Mohammad Froozanfar, Saber Moradi, Reza Kianoush","doi":"10.1016/j.cscm.2024.e03385","DOIUrl":null,"url":null,"abstract":"<div><p>A composite plate shear wall/concrete filled system, also known as “SpeedCore”, is a new lateral force-resisting system used as core walls in mid- and high-rise buildings. This composite wall system eliminates some of the conventional construction requirements in reinforced concrete core walls, resulting in faster construction and cost savings. This paper aims to identify factors affecting the cyclic response and limit states of coupled composite plate shear walls/concrete filled (CC-PSWs/CF). A statistical sensitivity analysis is performed using the Design of Experiments method. Finite element models of walls are developed and analyzed under cyclic loading. The accuracy of the finite element simulation is validated by using results from past experimental and numerical studies. The sensitivity analysis evaluates the effect of eight factors and their interactions on the lateral response of CC-PSWs/CF systems. Ten response parameters are considered, including the system initial stiffness, the onset of steel yielding in coupling beams and walls, the onset of compressive cracking of concrete in coupling beams and walls, coupling beam first and last steel yielding and plastic hinge in concrete, and the system lateral load capacity. The results show that the wall length is the most influential factor affecting all the response variables. The wall steel area ratio, steel yield strength, concrete compressive strength, wall thickness, and the coupling beam steel ratio and span-to-depth ratio affect at least four response variables.</p></div>","PeriodicalId":9641,"journal":{"name":"Case Studies in Construction Materials","volume":"21 ","pages":"Article e03385"},"PeriodicalIF":6.5000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214509524005369/pdfft?md5=52b9931ce706f679b6e3fa4ba39692b9&pid=1-s2.0-S2214509524005369-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cyclic response sensitivity of coupled composite plate shear walls/concrete filled (CC-PSWs/CF)\",\"authors\":\"Mohammad Froozanfar, Saber Moradi, Reza Kianoush\",\"doi\":\"10.1016/j.cscm.2024.e03385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A composite plate shear wall/concrete filled system, also known as “SpeedCore”, is a new lateral force-resisting system used as core walls in mid- and high-rise buildings. This composite wall system eliminates some of the conventional construction requirements in reinforced concrete core walls, resulting in faster construction and cost savings. This paper aims to identify factors affecting the cyclic response and limit states of coupled composite plate shear walls/concrete filled (CC-PSWs/CF). A statistical sensitivity analysis is performed using the Design of Experiments method. Finite element models of walls are developed and analyzed under cyclic loading. The accuracy of the finite element simulation is validated by using results from past experimental and numerical studies. The sensitivity analysis evaluates the effect of eight factors and their interactions on the lateral response of CC-PSWs/CF systems. Ten response parameters are considered, including the system initial stiffness, the onset of steel yielding in coupling beams and walls, the onset of compressive cracking of concrete in coupling beams and walls, coupling beam first and last steel yielding and plastic hinge in concrete, and the system lateral load capacity. The results show that the wall length is the most influential factor affecting all the response variables. The wall steel area ratio, steel yield strength, concrete compressive strength, wall thickness, and the coupling beam steel ratio and span-to-depth ratio affect at least four response variables.</p></div>\",\"PeriodicalId\":9641,\"journal\":{\"name\":\"Case Studies in Construction Materials\",\"volume\":\"21 \",\"pages\":\"Article e03385\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214509524005369/pdfft?md5=52b9931ce706f679b6e3fa4ba39692b9&pid=1-s2.0-S2214509524005369-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Construction Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214509524005369\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Construction Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214509524005369","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
A composite plate shear wall/concrete filled system, also known as “SpeedCore”, is a new lateral force-resisting system used as core walls in mid- and high-rise buildings. This composite wall system eliminates some of the conventional construction requirements in reinforced concrete core walls, resulting in faster construction and cost savings. This paper aims to identify factors affecting the cyclic response and limit states of coupled composite plate shear walls/concrete filled (CC-PSWs/CF). A statistical sensitivity analysis is performed using the Design of Experiments method. Finite element models of walls are developed and analyzed under cyclic loading. The accuracy of the finite element simulation is validated by using results from past experimental and numerical studies. The sensitivity analysis evaluates the effect of eight factors and their interactions on the lateral response of CC-PSWs/CF systems. Ten response parameters are considered, including the system initial stiffness, the onset of steel yielding in coupling beams and walls, the onset of compressive cracking of concrete in coupling beams and walls, coupling beam first and last steel yielding and plastic hinge in concrete, and the system lateral load capacity. The results show that the wall length is the most influential factor affecting all the response variables. The wall steel area ratio, steel yield strength, concrete compressive strength, wall thickness, and the coupling beam steel ratio and span-to-depth ratio affect at least four response variables.
期刊介绍:
Case Studies in Construction Materials provides a forum for the rapid publication of short, structured Case Studies on construction materials. In addition, the journal also publishes related Short Communications, Full length research article and Comprehensive review papers (by invitation).
The journal will provide an essential compendium of case studies for practicing engineers, designers, researchers and other practitioners who are interested in all aspects construction materials. The journal will publish new and novel case studies, but will also provide a forum for the publication of high quality descriptions of classic construction material problems and solutions.