{"title":"考虑等空间效应和连续态的修正宏观-微观核质量公式","authors":"Hai Fei Zhang","doi":"10.1016/j.nuclphysa.2024.122913","DOIUrl":null,"url":null,"abstract":"<div><p>The coefficients of modified macroscopic-microscopic mass formula have been adjusted on 2267 experimental atomic masses extracted from the AME2012 atomic mass evaluation. Same as the Weizsäcker-Skyrme model the influence of the nuclear deformation on the macroscopic energy and the mirror nuclei constraint are also taken into account, and for the sake of the consistency of the model parameters between the macroscopic and the microscopic parts we approximate the isospin-dependent component of the macroscopic energy to the depth of the Woods-Saxon potential. Inspired by Kruppa prescription the continuum states are considered in the calculation of shell correction. Then the root-mean square (rms) deviation with respect to 2267 measured nuclear masses is 0.46 MeV. We predict the remaining 988 nuclei from the AME2012 with <span><math><mi>Z</mi><mo>,</mo><mi>N</mi><mo>></mo><mn>7</mn></math></span> for which the mass is still unknown or known with a higher uncertainty. In addition the <em>α</em>−decay energies of seven chains in the superheavy nuclei region with <span><math><mi>Z</mi><mo>=</mo><mn>117</mn><mo>,</mo><mn>118</mn></math></span> are evaluated.</p></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1049 ","pages":"Article 122913"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified macroscopic-microscopic nuclear mass formula within considering isospin effect and continuum states\",\"authors\":\"Hai Fei Zhang\",\"doi\":\"10.1016/j.nuclphysa.2024.122913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The coefficients of modified macroscopic-microscopic mass formula have been adjusted on 2267 experimental atomic masses extracted from the AME2012 atomic mass evaluation. Same as the Weizsäcker-Skyrme model the influence of the nuclear deformation on the macroscopic energy and the mirror nuclei constraint are also taken into account, and for the sake of the consistency of the model parameters between the macroscopic and the microscopic parts we approximate the isospin-dependent component of the macroscopic energy to the depth of the Woods-Saxon potential. Inspired by Kruppa prescription the continuum states are considered in the calculation of shell correction. Then the root-mean square (rms) deviation with respect to 2267 measured nuclear masses is 0.46 MeV. We predict the remaining 988 nuclei from the AME2012 with <span><math><mi>Z</mi><mo>,</mo><mi>N</mi><mo>></mo><mn>7</mn></math></span> for which the mass is still unknown or known with a higher uncertainty. In addition the <em>α</em>−decay energies of seven chains in the superheavy nuclei region with <span><math><mi>Z</mi><mo>=</mo><mn>117</mn><mo>,</mo><mn>118</mn></math></span> are evaluated.</p></div>\",\"PeriodicalId\":19246,\"journal\":{\"name\":\"Nuclear Physics A\",\"volume\":\"1049 \",\"pages\":\"Article 122913\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375947424000952\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947424000952","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
A modified macroscopic-microscopic nuclear mass formula within considering isospin effect and continuum states
The coefficients of modified macroscopic-microscopic mass formula have been adjusted on 2267 experimental atomic masses extracted from the AME2012 atomic mass evaluation. Same as the Weizsäcker-Skyrme model the influence of the nuclear deformation on the macroscopic energy and the mirror nuclei constraint are also taken into account, and for the sake of the consistency of the model parameters between the macroscopic and the microscopic parts we approximate the isospin-dependent component of the macroscopic energy to the depth of the Woods-Saxon potential. Inspired by Kruppa prescription the continuum states are considered in the calculation of shell correction. Then the root-mean square (rms) deviation with respect to 2267 measured nuclear masses is 0.46 MeV. We predict the remaining 988 nuclei from the AME2012 with for which the mass is still unknown or known with a higher uncertainty. In addition the α−decay energies of seven chains in the superheavy nuclei region with are evaluated.
期刊介绍:
Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.