Peiying Zhang , Zixuan Cui , Neeraj Kumar , Jian Wang , Wei Zhang , Lizhuang Tan
{"title":"深度强化学习方法中的天基骨干网络局部搜索资源分配算法","authors":"Peiying Zhang , Zixuan Cui , Neeraj Kumar , Jian Wang , Wei Zhang , Lizhuang Tan","doi":"10.1016/j.adhoc.2024.103575","DOIUrl":null,"url":null,"abstract":"<div><p>With the evolution of Space-based backbone networks, the demand for enhanced efficiency and stability in network resource allocation has become increasingly critical, presenting a substantial challenge to conventional allocation methods. In response, we introduce an innovative resource allocation algorithm for space-based backbone networks. This algorithm represents a synergistic fusion of Deep Reinforcement Learning (DRL) and Local Search (LS) methodologies. It is specifically designed to reduce the extensive training duration associated with traditional policy networks, a crucial aspect in assuring optimal service quality. Our algorithm is structured within a two-stage framework that seamlessly integrates DRL and LS. A distinctive feature of our approach is the incorporation of link reliability into the algorithmic design. This element is meticulously tailored to address the dynamic and heterogeneous nature of space-based networks, ensuring effective resource management. The effectiveness of our approach is substantiated through extensive simulation results. These results demonstrate that the integration of DRL with LS not only enhances training efficiency but also exhibits significant improvements in resource allocation outcomes. Our work represents a noteworthy contribution to the development of practical optimization strategies in space-based networks, merging DRL with traditional methodologies for improved performance.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local search resource allocation algorithm for space-based backbone network in Deep Reinforcement Learning method\",\"authors\":\"Peiying Zhang , Zixuan Cui , Neeraj Kumar , Jian Wang , Wei Zhang , Lizhuang Tan\",\"doi\":\"10.1016/j.adhoc.2024.103575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the evolution of Space-based backbone networks, the demand for enhanced efficiency and stability in network resource allocation has become increasingly critical, presenting a substantial challenge to conventional allocation methods. In response, we introduce an innovative resource allocation algorithm for space-based backbone networks. This algorithm represents a synergistic fusion of Deep Reinforcement Learning (DRL) and Local Search (LS) methodologies. It is specifically designed to reduce the extensive training duration associated with traditional policy networks, a crucial aspect in assuring optimal service quality. Our algorithm is structured within a two-stage framework that seamlessly integrates DRL and LS. A distinctive feature of our approach is the incorporation of link reliability into the algorithmic design. This element is meticulously tailored to address the dynamic and heterogeneous nature of space-based networks, ensuring effective resource management. The effectiveness of our approach is substantiated through extensive simulation results. These results demonstrate that the integration of DRL with LS not only enhances training efficiency but also exhibits significant improvements in resource allocation outcomes. Our work represents a noteworthy contribution to the development of practical optimization strategies in space-based networks, merging DRL with traditional methodologies for improved performance.</p></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870524001860\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524001860","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
随着天基骨干网络的发展,对提高网络资源分配效率和稳定性的要求越来越高,这对传统的分配方法提出了巨大挑战。为此,我们为天基骨干网络引入了一种创新的资源分配算法。该算法是深度强化学习(DRL)和局部搜索(LS)方法的协同融合。它专门用于减少与传统策略网络相关的大量训练时间,这是确保最佳服务质量的一个关键方面。我们的算法采用两阶段框架结构,无缝集成了 DRL 和 LS。我们方法的一个显著特点是将链路可靠性纳入算法设计。这一要素是针对天基网络的动态和异构性质而精心定制的,可确保有效的资源管理。我们的方法的有效性通过大量的模拟结果得到了证实。这些结果表明,DRL 与 LS 的整合不仅提高了训练效率,还显著改善了资源分配结果。我们的工作为天基网络实用优化策略的开发做出了显著贡献,将 DRL 与传统方法相结合,提高了性能。
Local search resource allocation algorithm for space-based backbone network in Deep Reinforcement Learning method
With the evolution of Space-based backbone networks, the demand for enhanced efficiency and stability in network resource allocation has become increasingly critical, presenting a substantial challenge to conventional allocation methods. In response, we introduce an innovative resource allocation algorithm for space-based backbone networks. This algorithm represents a synergistic fusion of Deep Reinforcement Learning (DRL) and Local Search (LS) methodologies. It is specifically designed to reduce the extensive training duration associated with traditional policy networks, a crucial aspect in assuring optimal service quality. Our algorithm is structured within a two-stage framework that seamlessly integrates DRL and LS. A distinctive feature of our approach is the incorporation of link reliability into the algorithmic design. This element is meticulously tailored to address the dynamic and heterogeneous nature of space-based networks, ensuring effective resource management. The effectiveness of our approach is substantiated through extensive simulation results. These results demonstrate that the integration of DRL with LS not only enhances training efficiency but also exhibits significant improvements in resource allocation outcomes. Our work represents a noteworthy contribution to the development of practical optimization strategies in space-based networks, merging DRL with traditional methodologies for improved performance.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.